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Forward SDE (data — noise

x,t)dt + g(t)dw

score function
= [f(x,t) — g°(¢ &xlogpt x]] dt + g(t)dw @

Reverse SDE (noise — data)




Probability associated with the visible
units (evidence)

» Energy associated with the RBM:
Ey(v,h) = —v' Wh — v'b — h'c

» Probability associated with the visible units; evidence:

1 —E(v
Py(V) = 526 peh)
h
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Stochastic differential equations and
Fokker-Planck equation

» Forward or noising equation; drift and diffusion matrices; Weiner process: \
dv = Fvdt + G,dw, v e R”FeR”P GeR” w

» Backward of denoising process; score function (https://arxiv.org/abs/2011.13456); m&lhple
steps (the more, the better (bad news!): |

dv = |Fv - G,G/V, Inp, (v)|dt + G,dw

» Corresponding Fokker-Planck equation:

(9pt(v):_v.;
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Fv — %GthTVth (V)
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The missing link: the score function

» Score function:
Sq(Vv) = V_ In py(v)

» Gradient; let’s assume a continupus relaxation:

V. Inpy(v) =V_1In Ze_Ee(V’h) —
h

S e BT (—Ey(v,h))

V. Inp(v) = 2
v 2 : —E,(v,)h)
e 0
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From discrete to continuous variables:
the Gumbel trick

» Gradient of the evidence (https://doi.org/10.3389/fphy.2021.589626); Gumbel noise:

V., Inpy(v) = Ehwpe(h|V) [—VVEG (v, h)] \\\,
—V Ey(v,;h) = Wh + b = V, Inpy(v) = EhNg?(mv)

polh; =1|v) =o(W'v +¢))) = 7(Lo;(v))

» Continuous approximation of the hidden units, sigmoid; Gumbel trick
(https://arxiv.org/abs/2410.22870); logit; annealing parameter (rounds); Gumbel

distribution; stochgstic: fe,j(") Z/[ 0.1 y
’ A \ u —~ =
(Wive) +o(u) j - UL, o
[]j(T) =0 jT «h,
T = 7'(72) =7 —°




In a nutshell

[)j(T) =0

» Gradient of the evidence with the Gumbel trick; stochastic;
“reparametrisation trick”; the visible units may be binary (no
differentiation):

‘”hmpe(h\v) H ~ I, [

V. Inpy(v) = %[Wh(T) +b|, u~




The pros and cons

Mean field Gumbel trick

Deterministic Stochastic (as the visible units)
First moment (mean) All moments

Predict visible units’ probability Predict visible units

Relatively simple Complex

One step Annealing




Variance preserving parametrisation

» Closed-form (and optimal) solution for the noising equation:

1ding, dlng,
2 dt dt

I

» Noise scheduling: linear, sinusoidal, signal-to-noise ratio.




Loss function

» Score matching:

£(0)=E

on

A@®)|E,[Wh(7) +b] - V

t,Vg,V,,U

» The conditioned evidence is a solution of the noising equation;
reparametrisation trick (https://arxiv.org/abs/2011.13456):

M(Voﬂf)

f 1 tA
—— | B(s)ds
vV, ~e 2f° i vy +0.8 C~ NI =

v, ~ p(vt | V()) — N(Vt;,LL(VO,t),O'tI)
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In all its glory!

» Score matching:

L (0)=E W

T 1,v,,V,,u




Training and data generation

» Stochastic optimisation; annealing parameter:

0= {B,G,W} =argmin L (b,c, W)

b,c,W

7—0

» Generation; denoising; e.g. Euler - Maruyama integration,
time-consuming:

Viet = Vi vr—G,G, 5,(v,. 1) Aw = |
' — ...V

T — Vr_q 0
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The RBM as a generative diffusion model
sampler |

» Typically, the score function is learned in a direct manner,
which implies that the data distribution is not tractable
and thus necessitates sampling through the use of the
backward (denoising) equation.

» But in our case, the score function is modelled after the
score function of the restricted Boltzmann machine:

54(v) = V_ In Pp e W (V)




The RBM as a generative diffusion model
sampler |

» The RBM can directly sample the generative diffusion

modet 0= {f),é,W} = p (V)=

v=p, (V)

» It may be sampled either with a Gibbs sampling
technique...

» Or directly with D-Wave in one step:

v~¥(6)



Conclusions |

» Missing link: the score function: the latter is assimilated
to the score function of the evidence

» Gumbel trick with temperature annealing
» Score matching techniques for learning

» The RBM becomes a one-step sampler for the
diffusion process

» As opposed to the reverse stochastic differential equation,
which requires hundreds of steps, the generative process
can be sampled directly from the RBM either with
Gibbs sampling techniques or with D-Wave y




Conclusions I

» The generated data are binary and not real

» The restricted Boltzmann machine may be assimilated to a
diffusion model, which may be employed to learn the
binary latent space

» Real data could be generated with a Gaussian-Bernoulli
RBM, but the latter cannot be simulated on a D-Wave
quantum computer
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