

DTRC-NRC

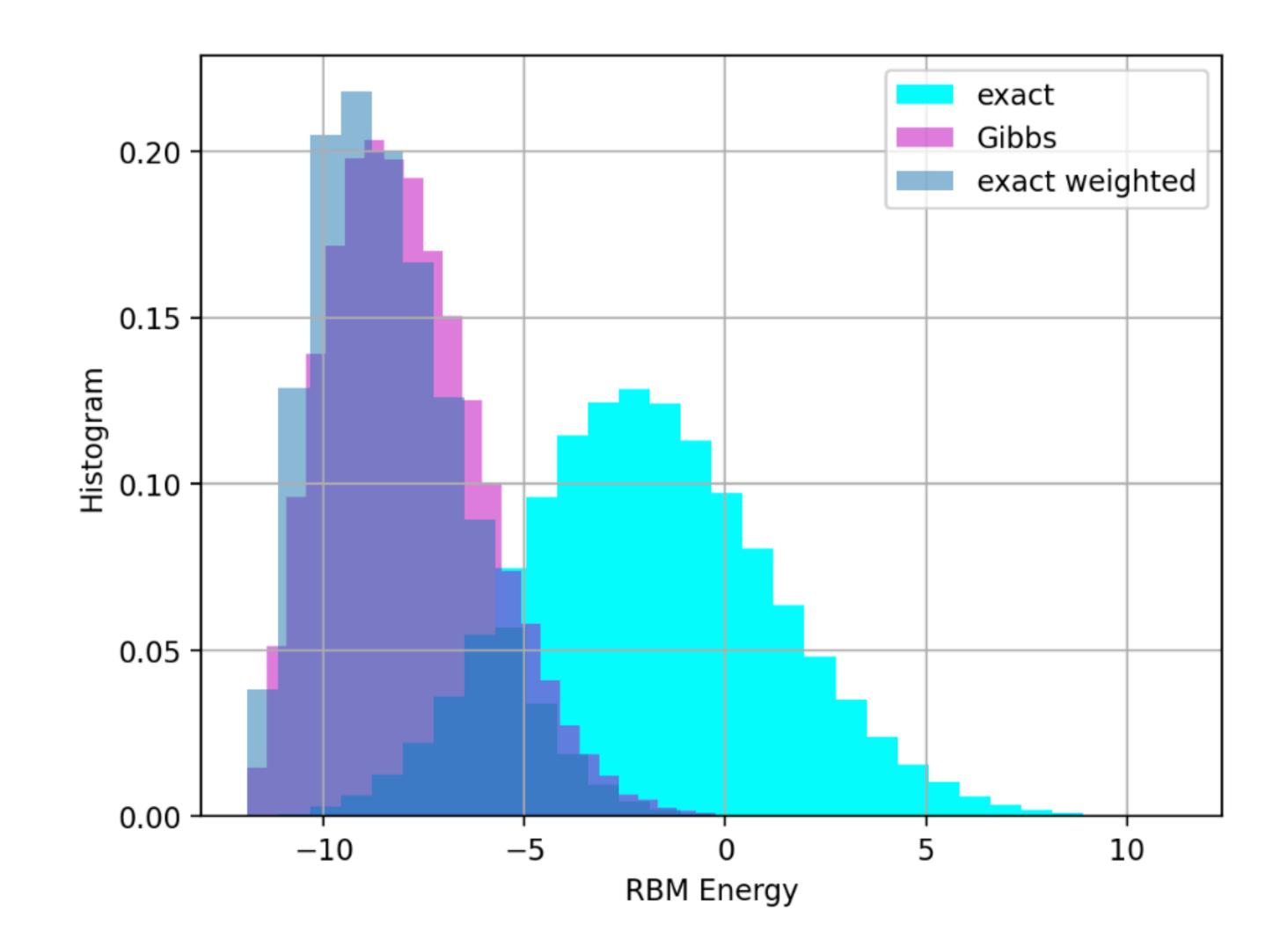
Calo4pQVAE: Progress and updates

Small RBM

Small RBM (Zephyr top)

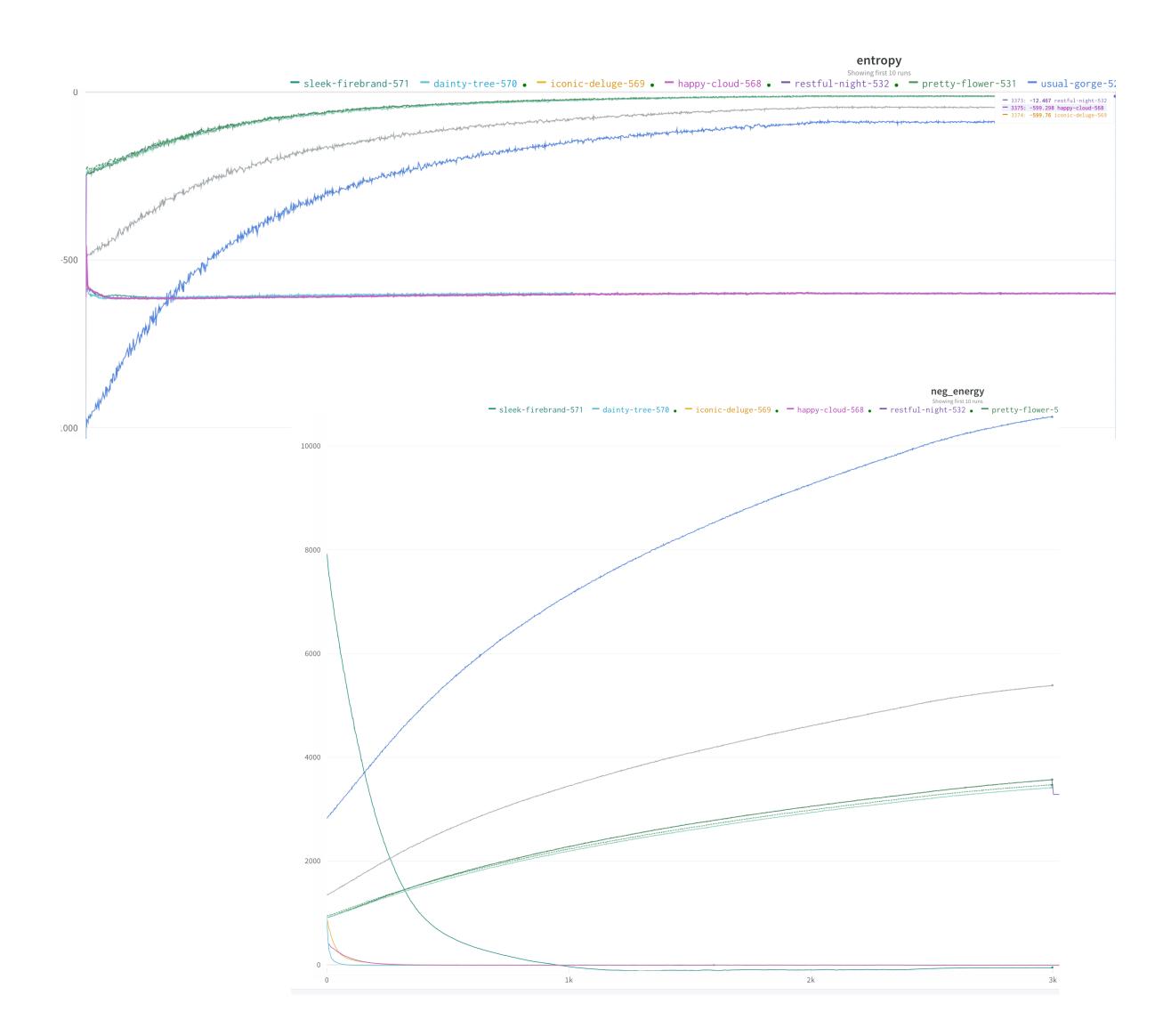
7x7x7x7. Weights and biases samples from N(0,1)

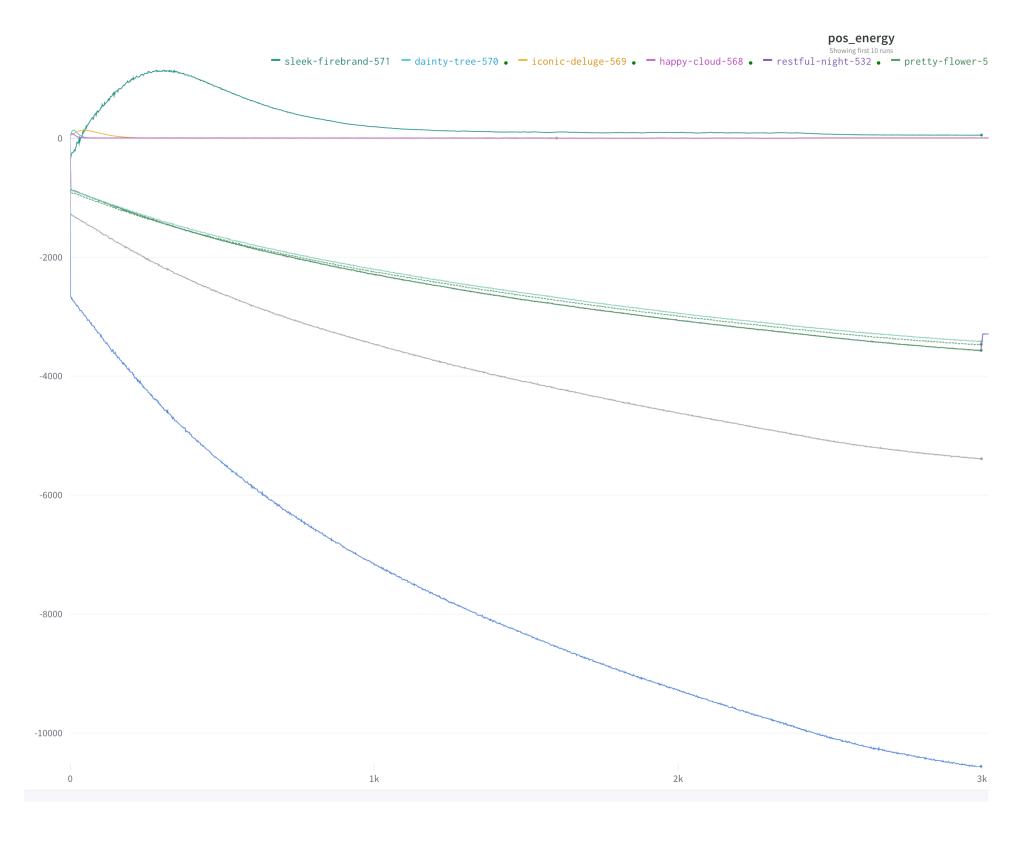
- Weighing the samples fixed the discrepancy.
- BGS and QA can accurately estimate Statistical averages.
- We can train models reliably with BGS and QA.



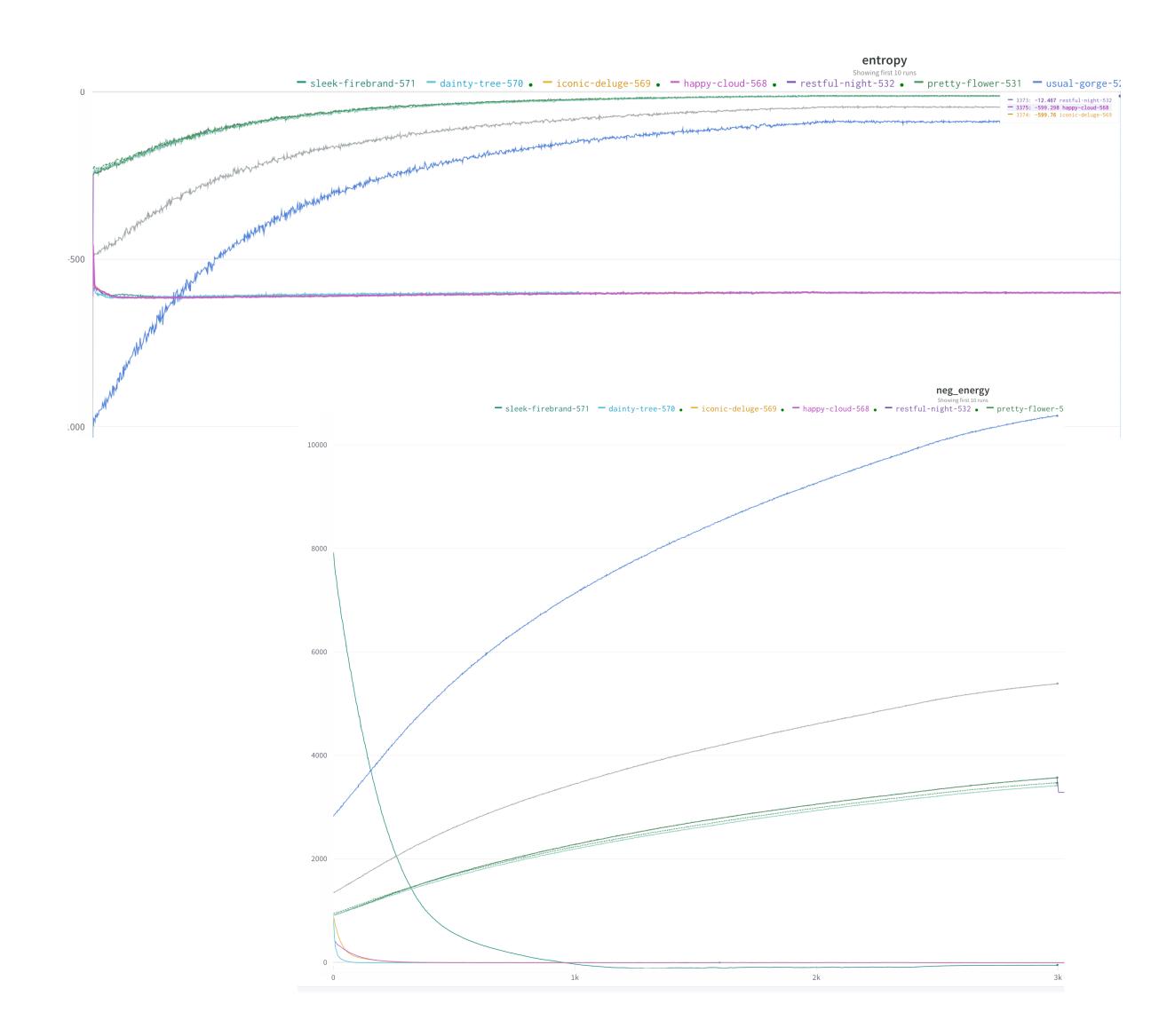
New models

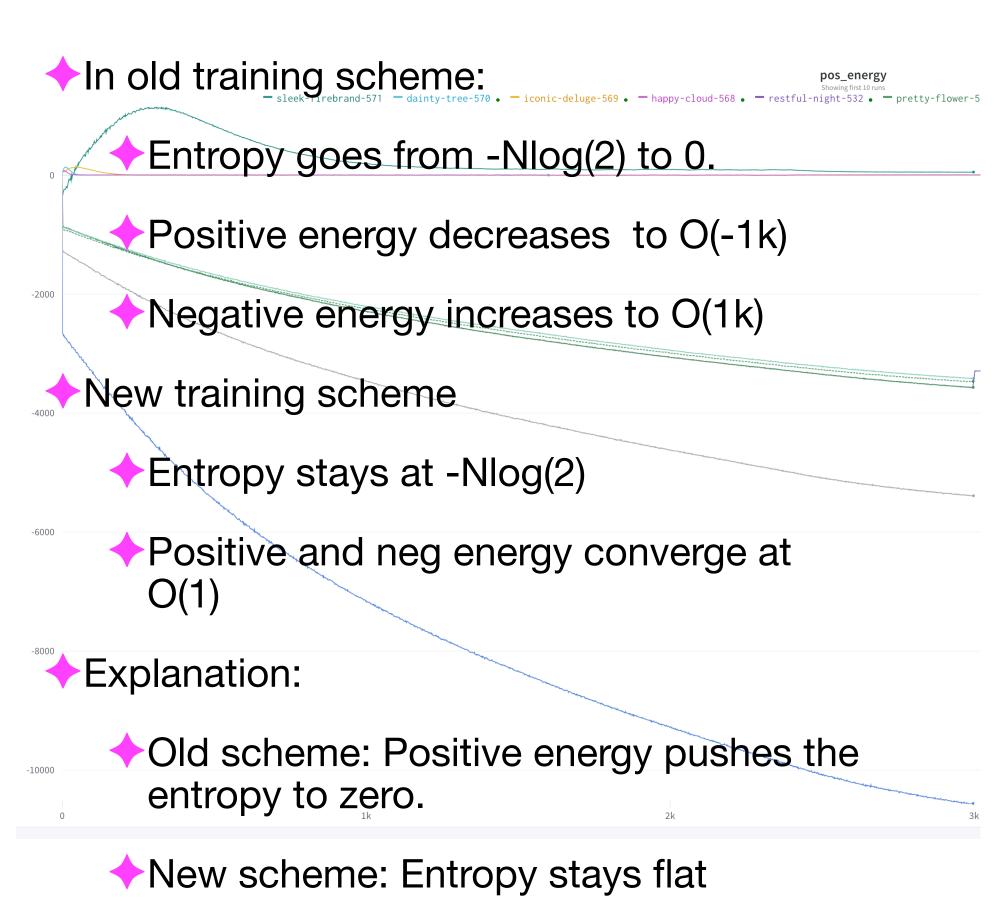
Encoder Entropy & RBM log-likelihood





Encoder Entropy & RBM log-likelihood

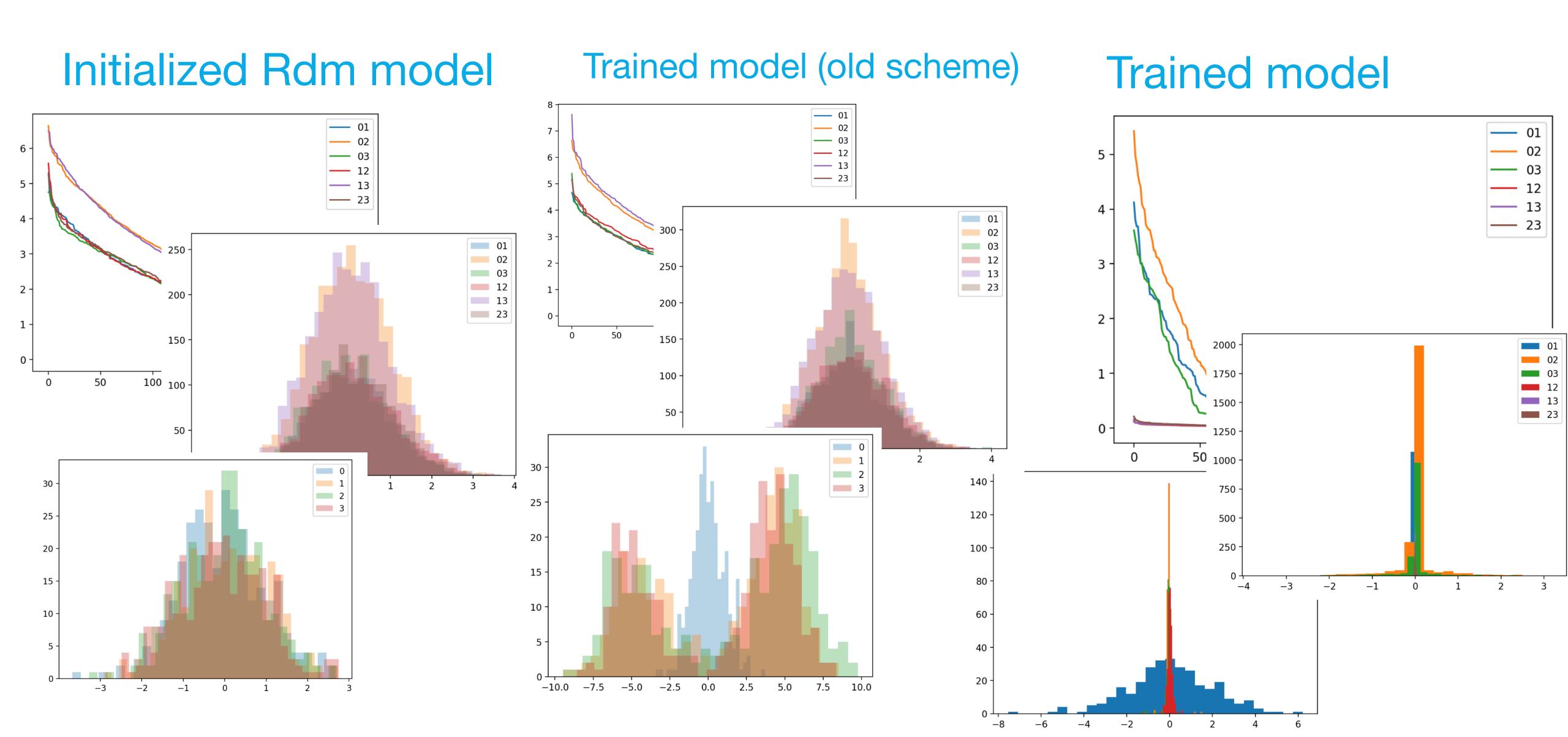




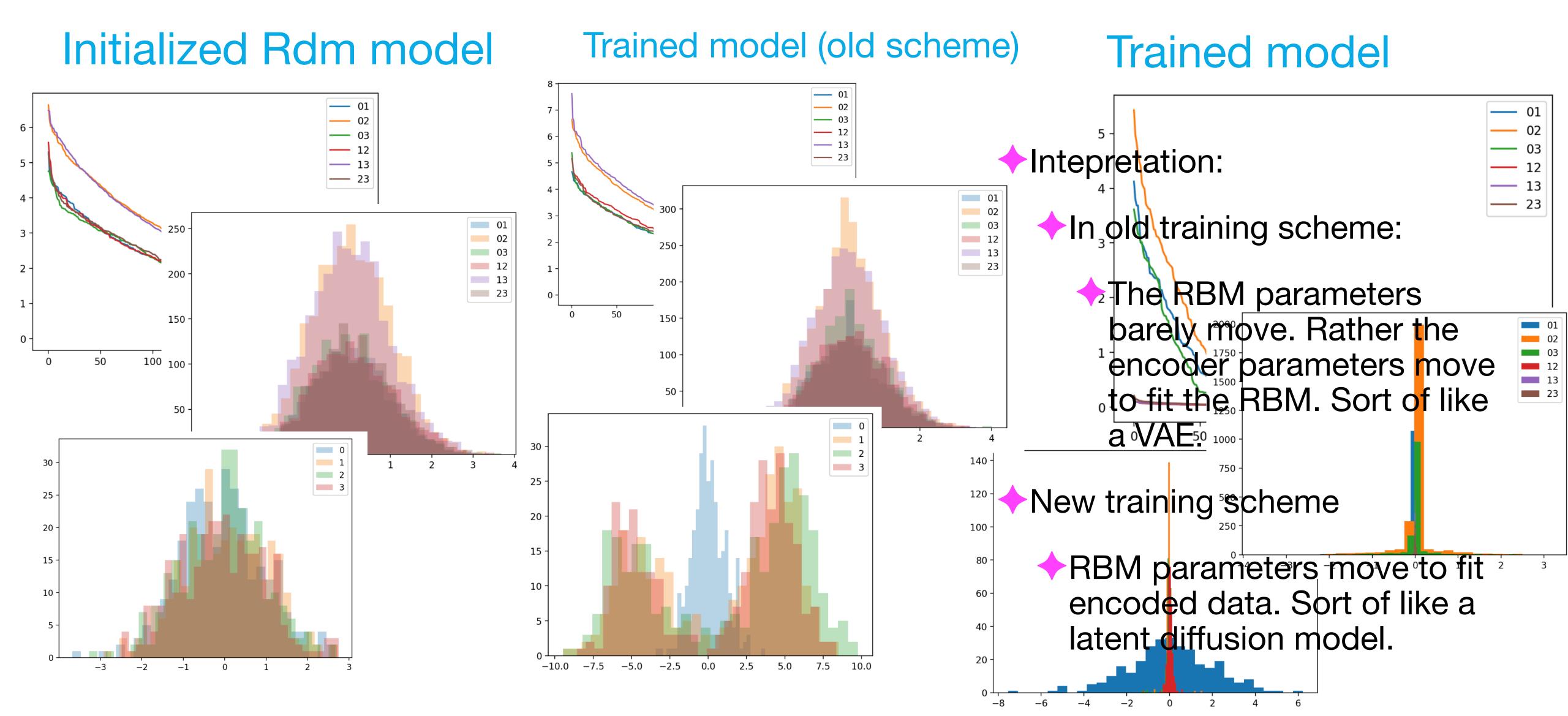
Encoder Entropy & RBM log-likelihood

- ♦ In latent diffusion models, the encoder-decoder are first trained and the diffusion model is trained afterwards.
- ♦ In CaloQVAE, we can train the usual way (as we did in the PRX draft). Afterwards, trying the RBM using the centred gradient approach.

SVD

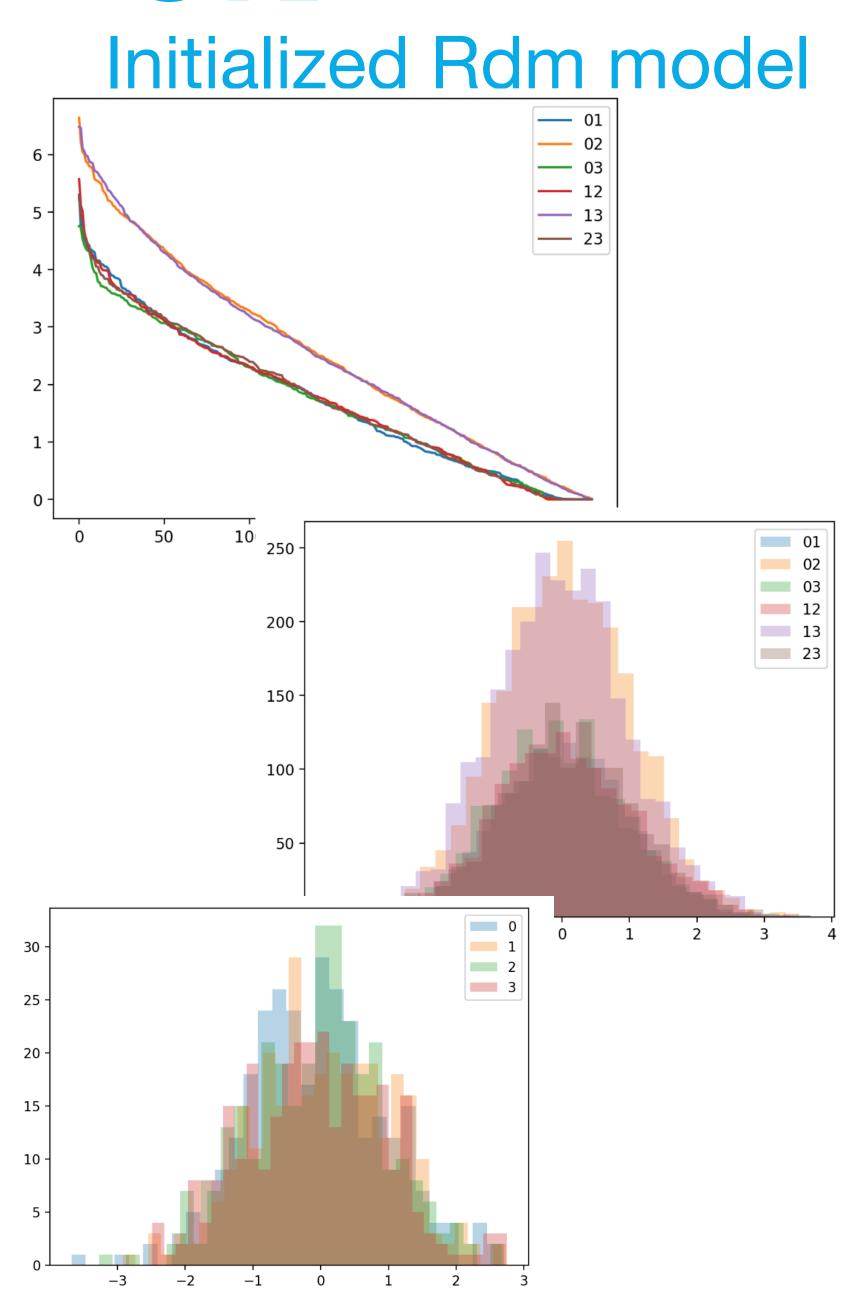


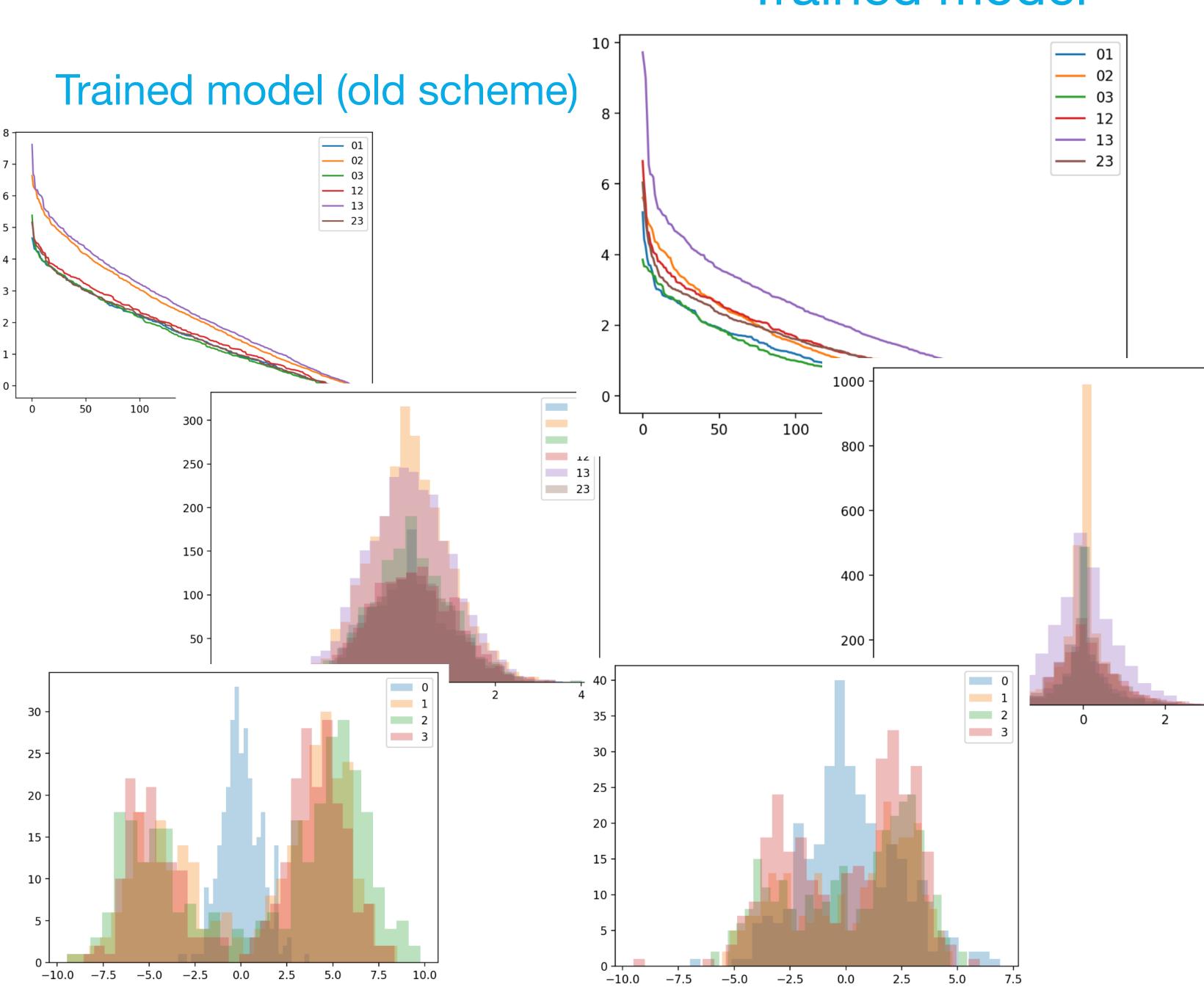
SVD

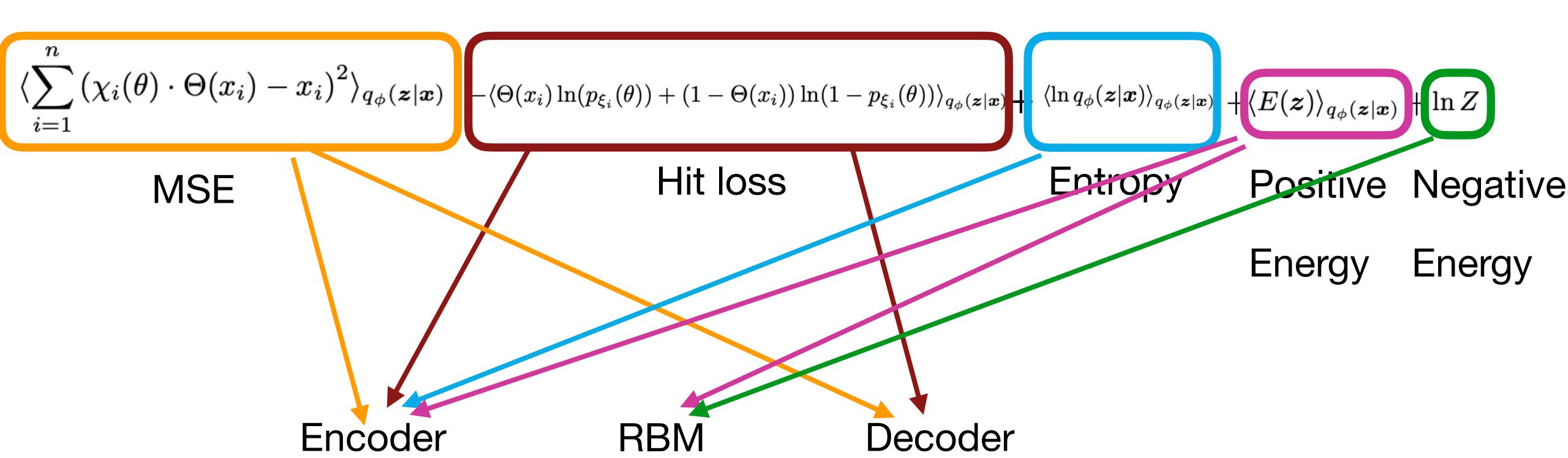


SVD

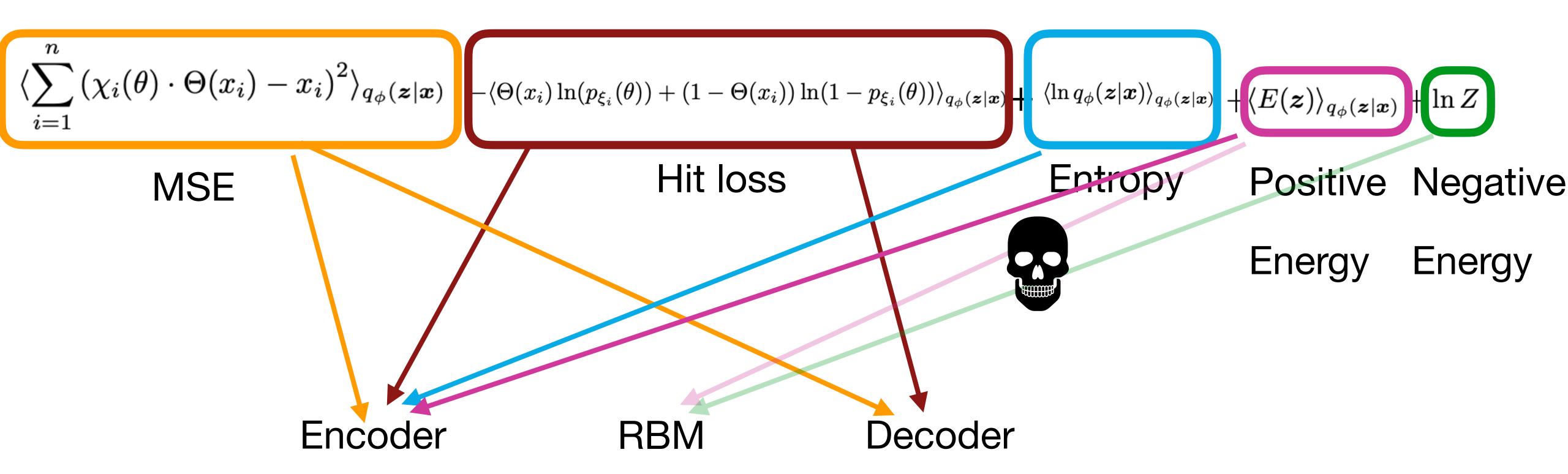
Trained model



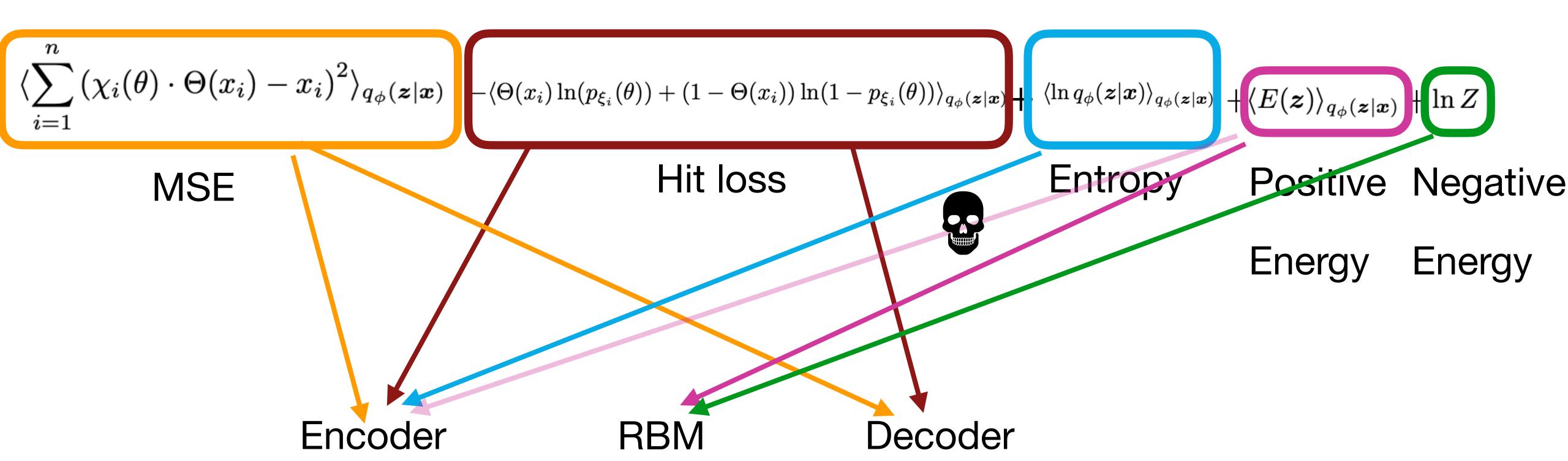




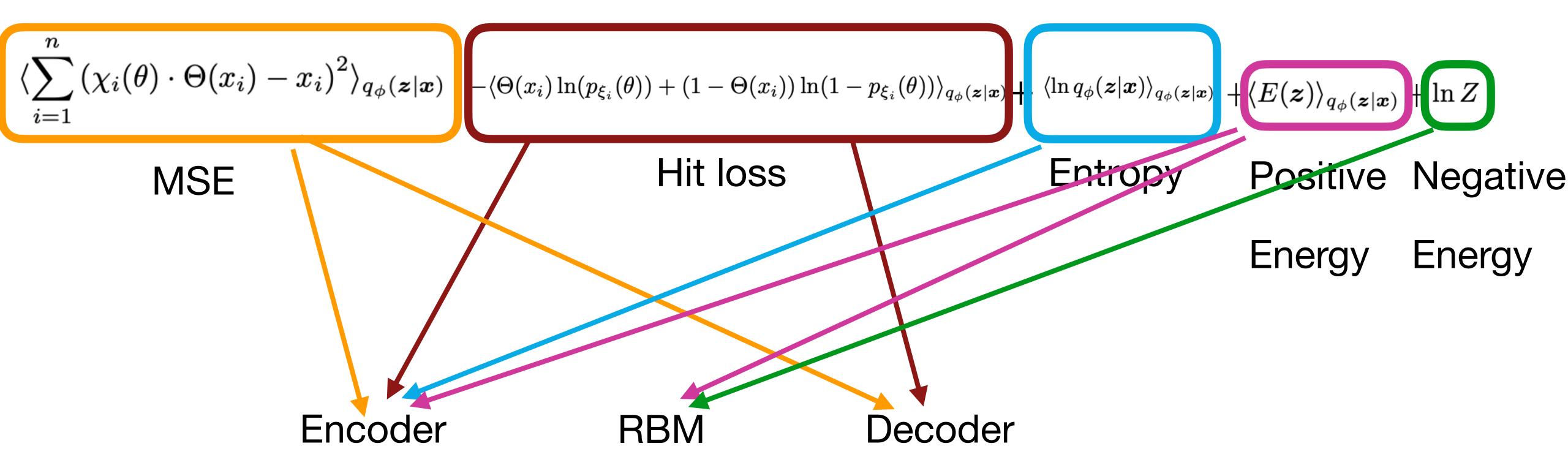
Old training scheme



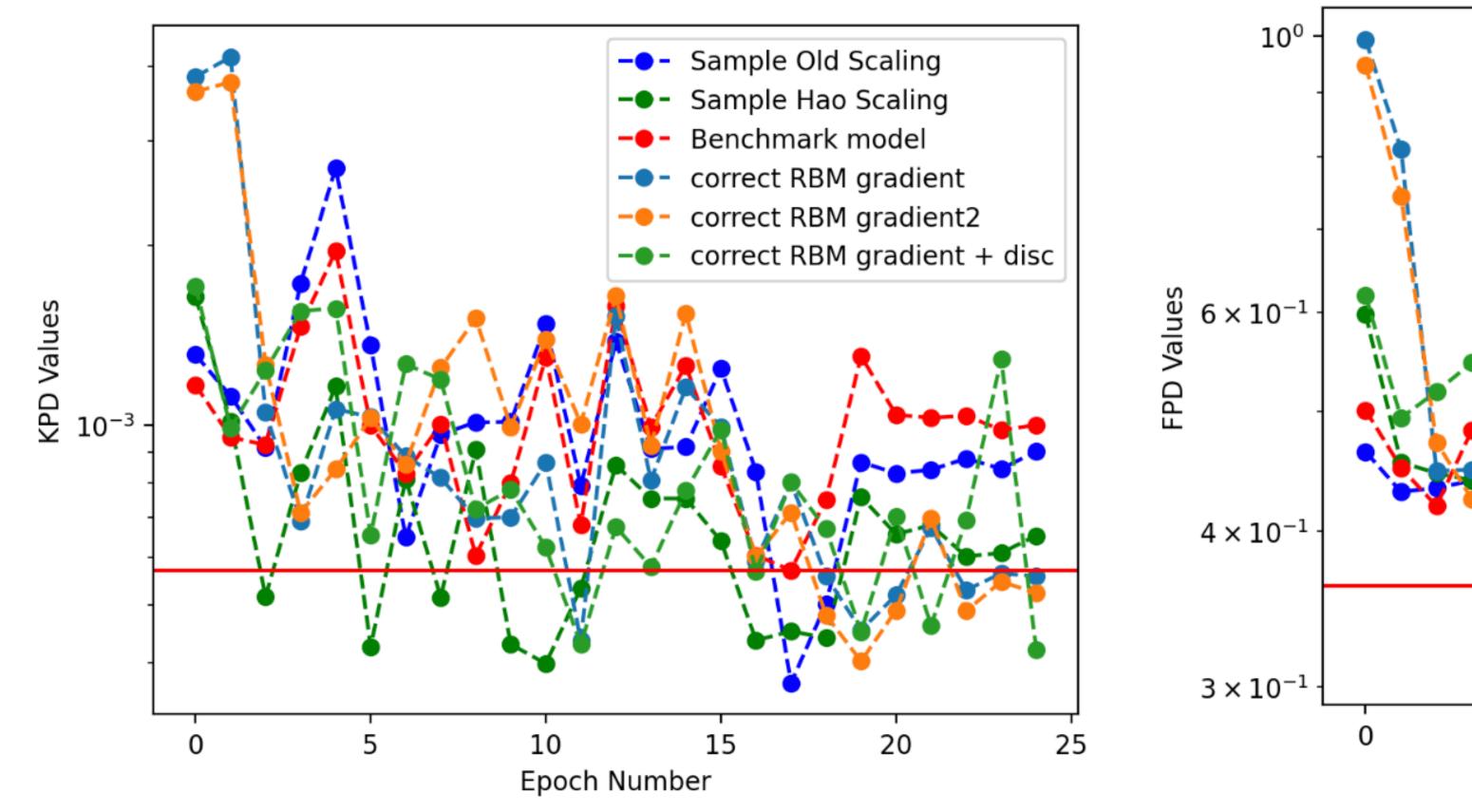
Training scheme from last week

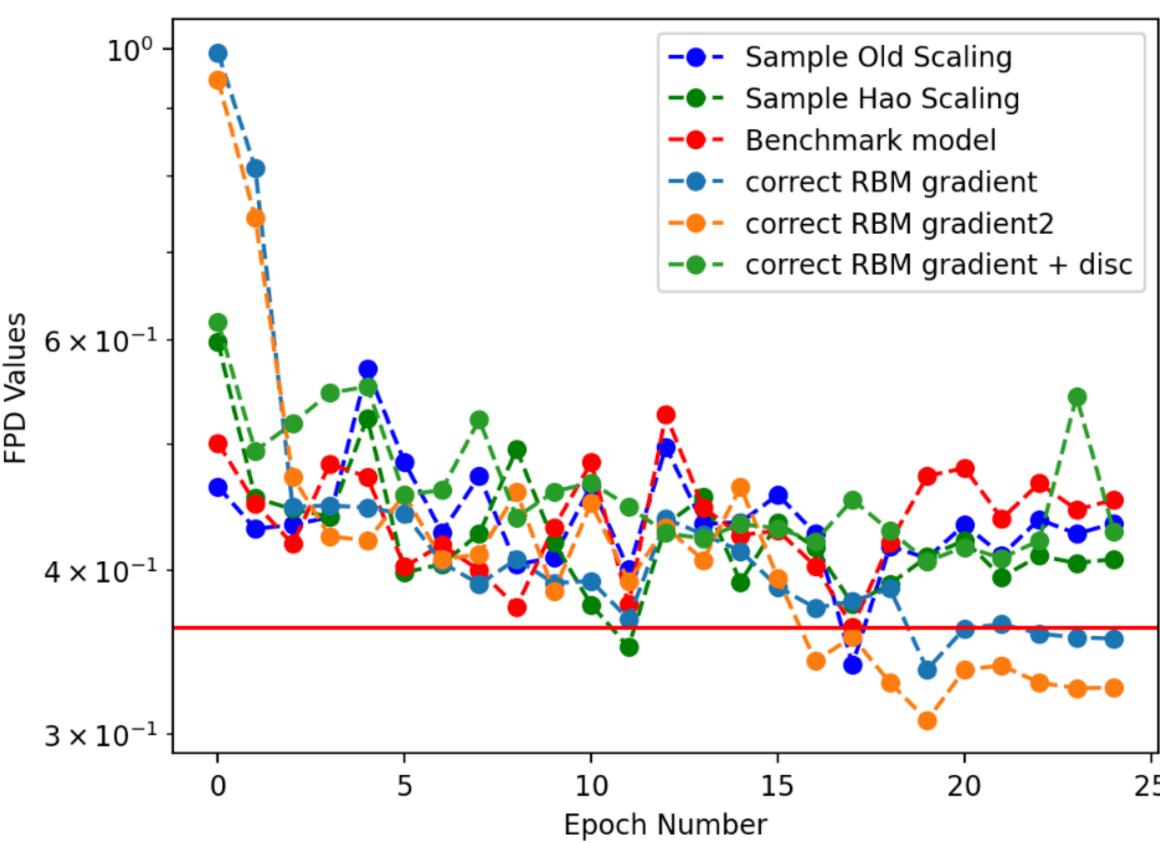


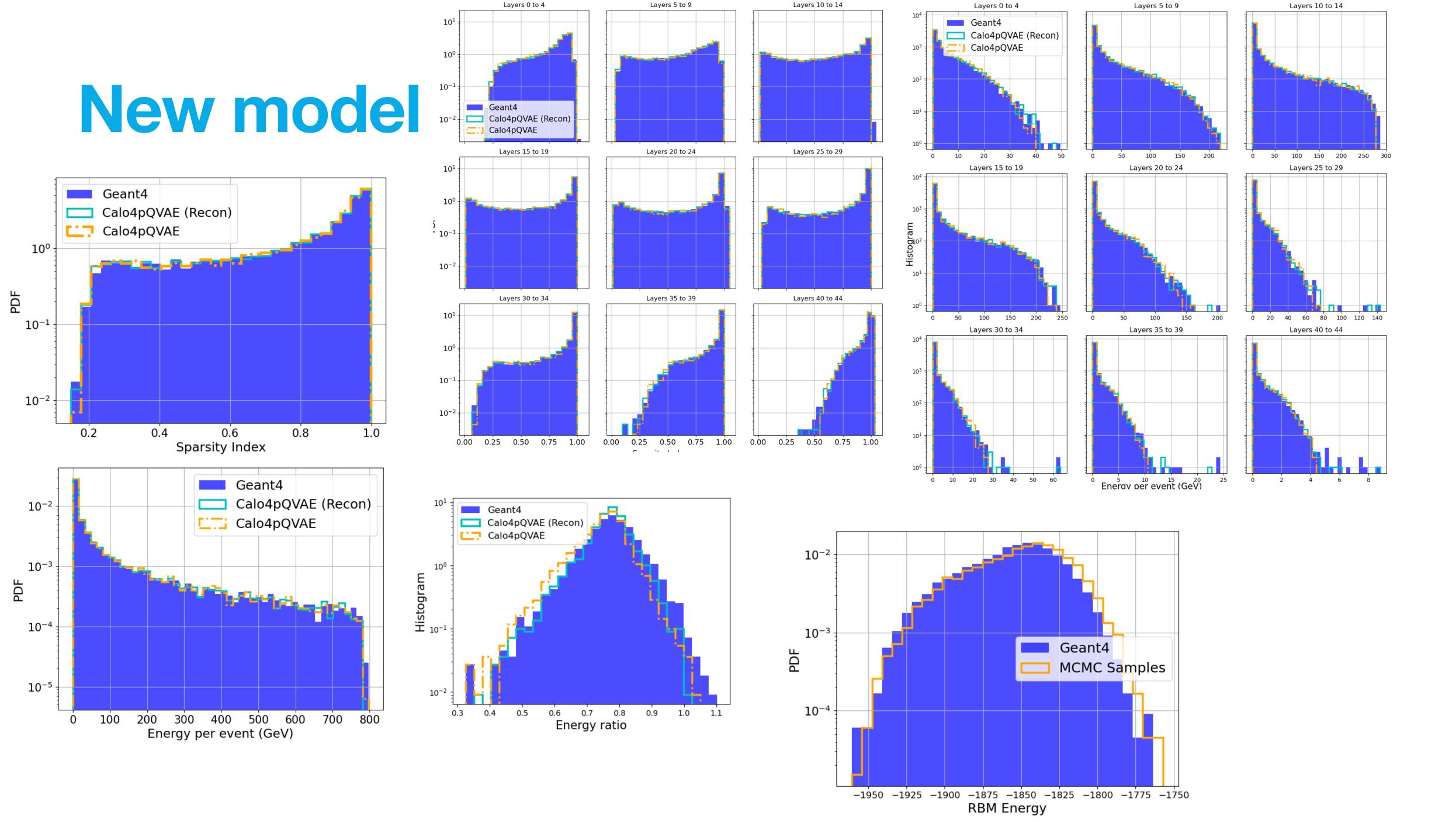
New Training scheme



New model

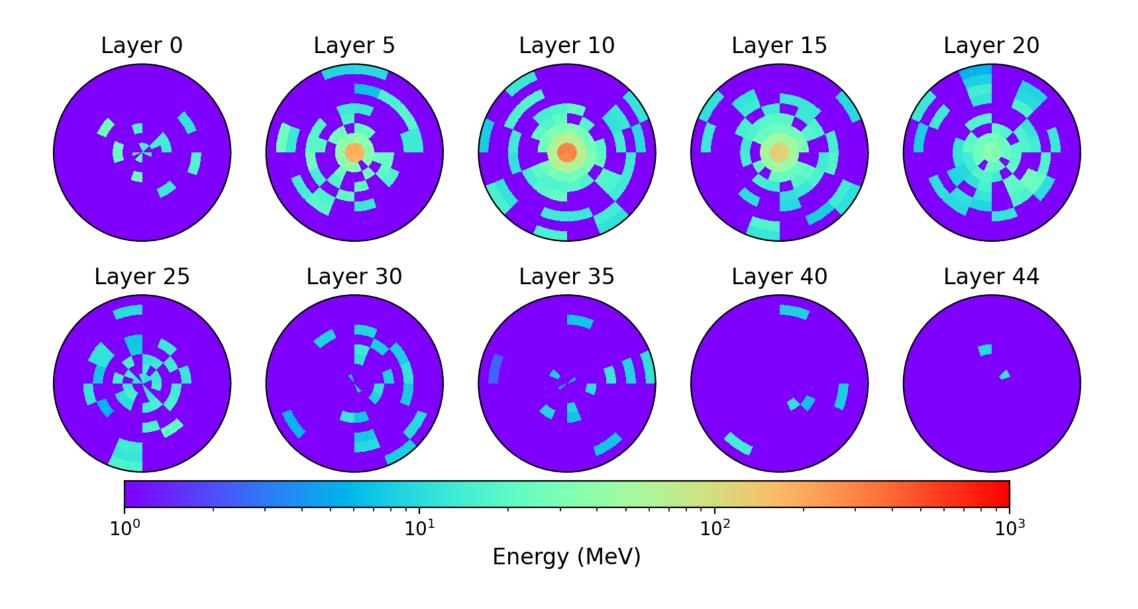


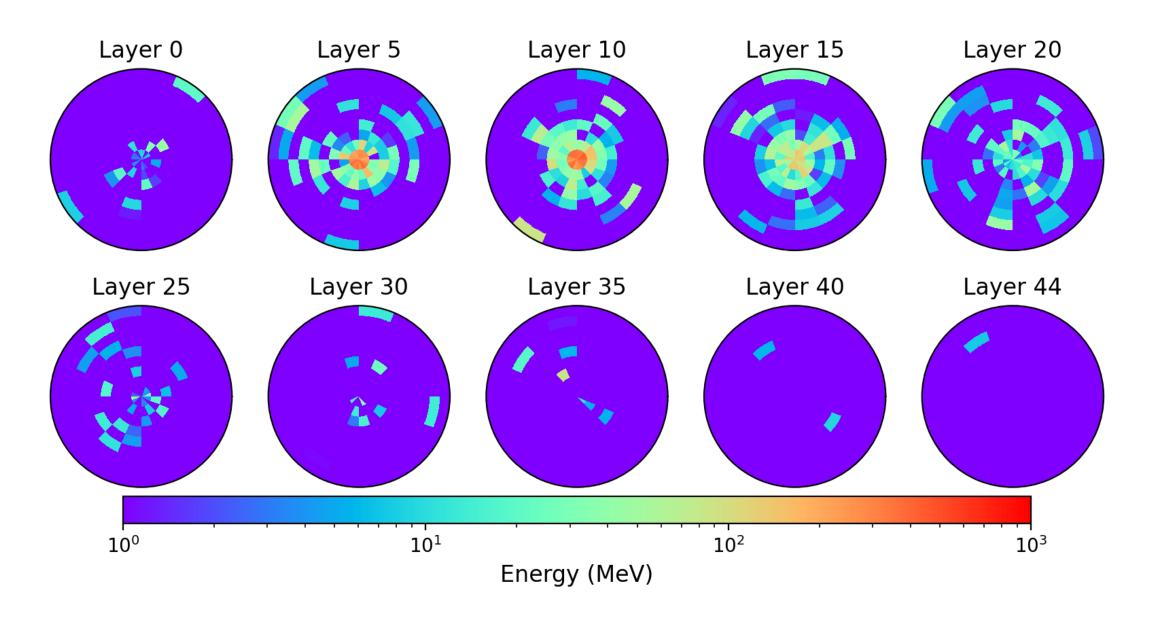




New model

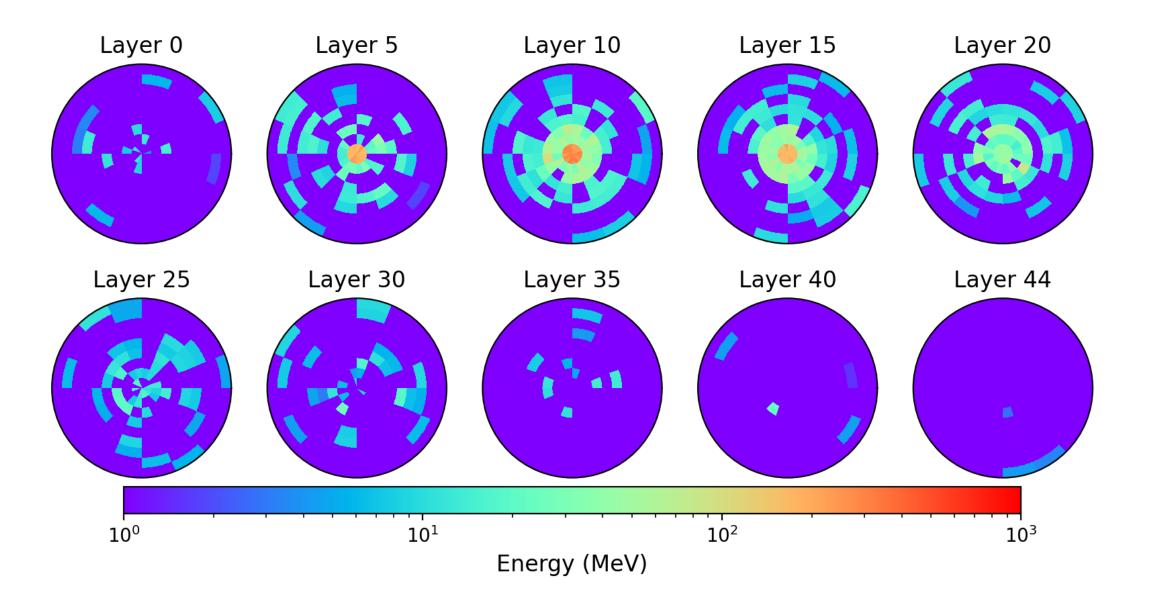
But the granularity is still poor

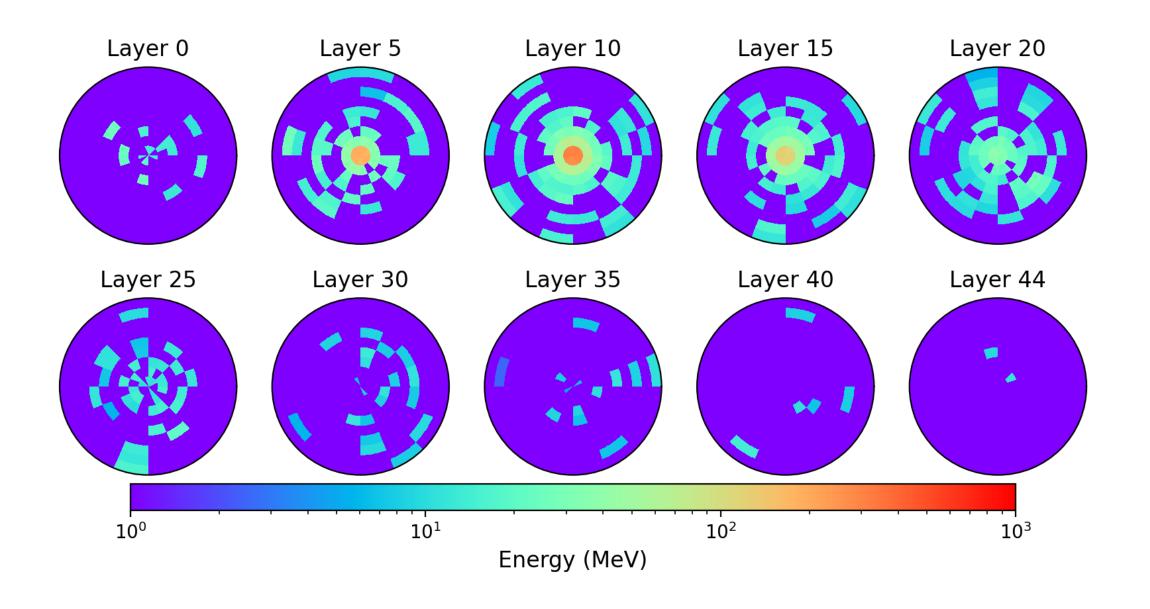


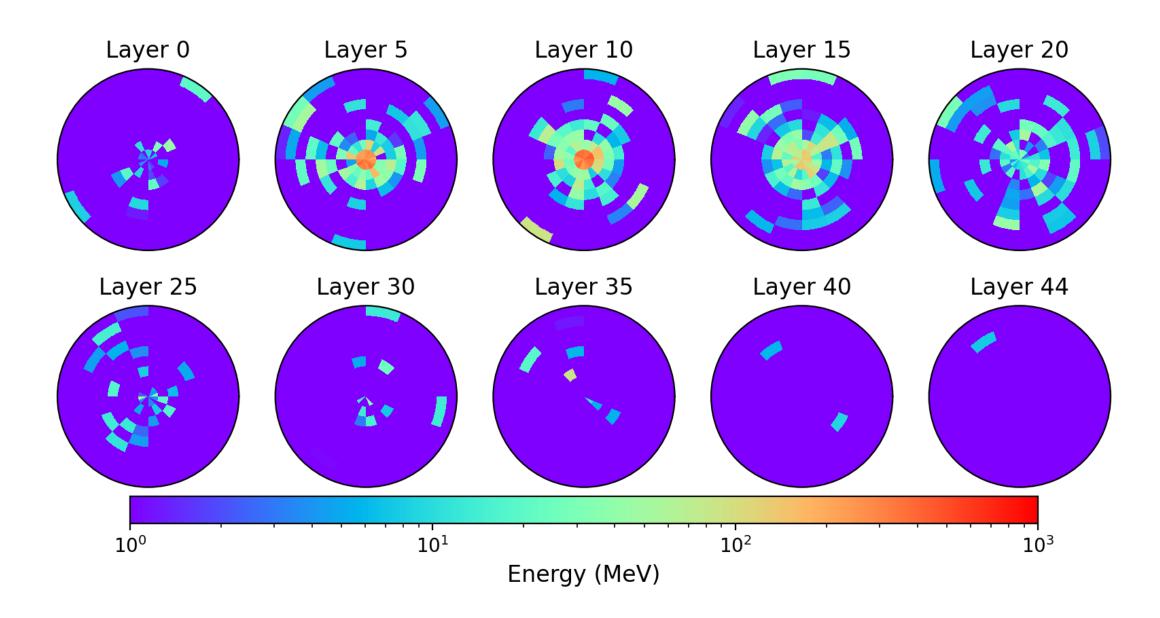


New model

But the granularity is still poor But the discriminator might be the answer...

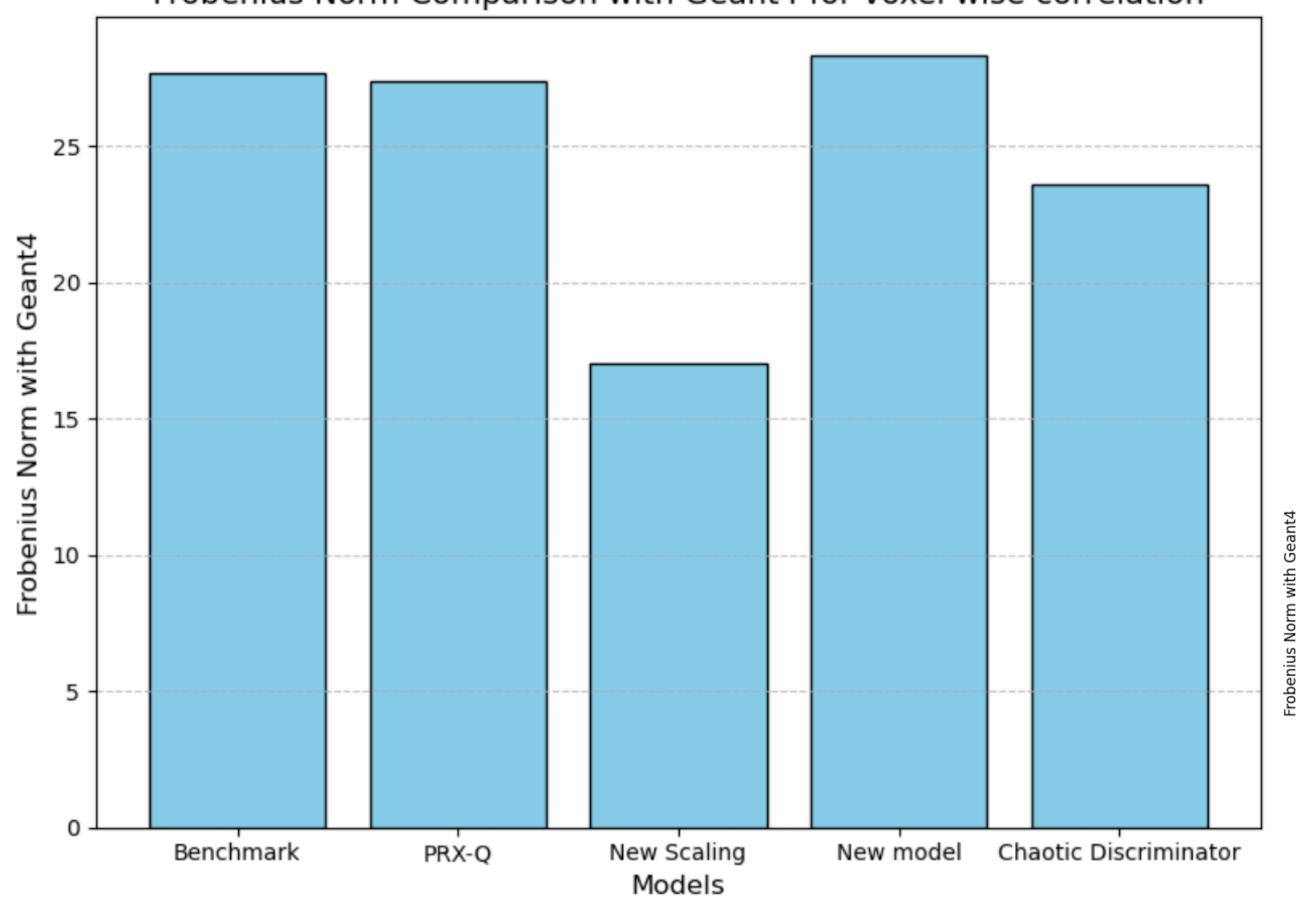


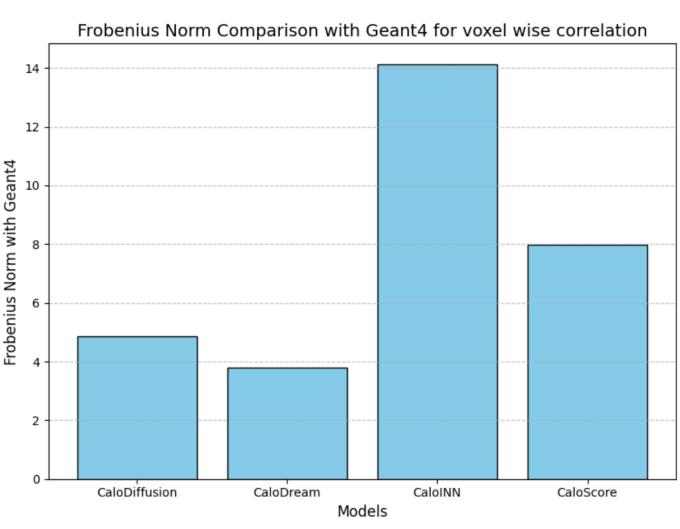




Frobenius metric

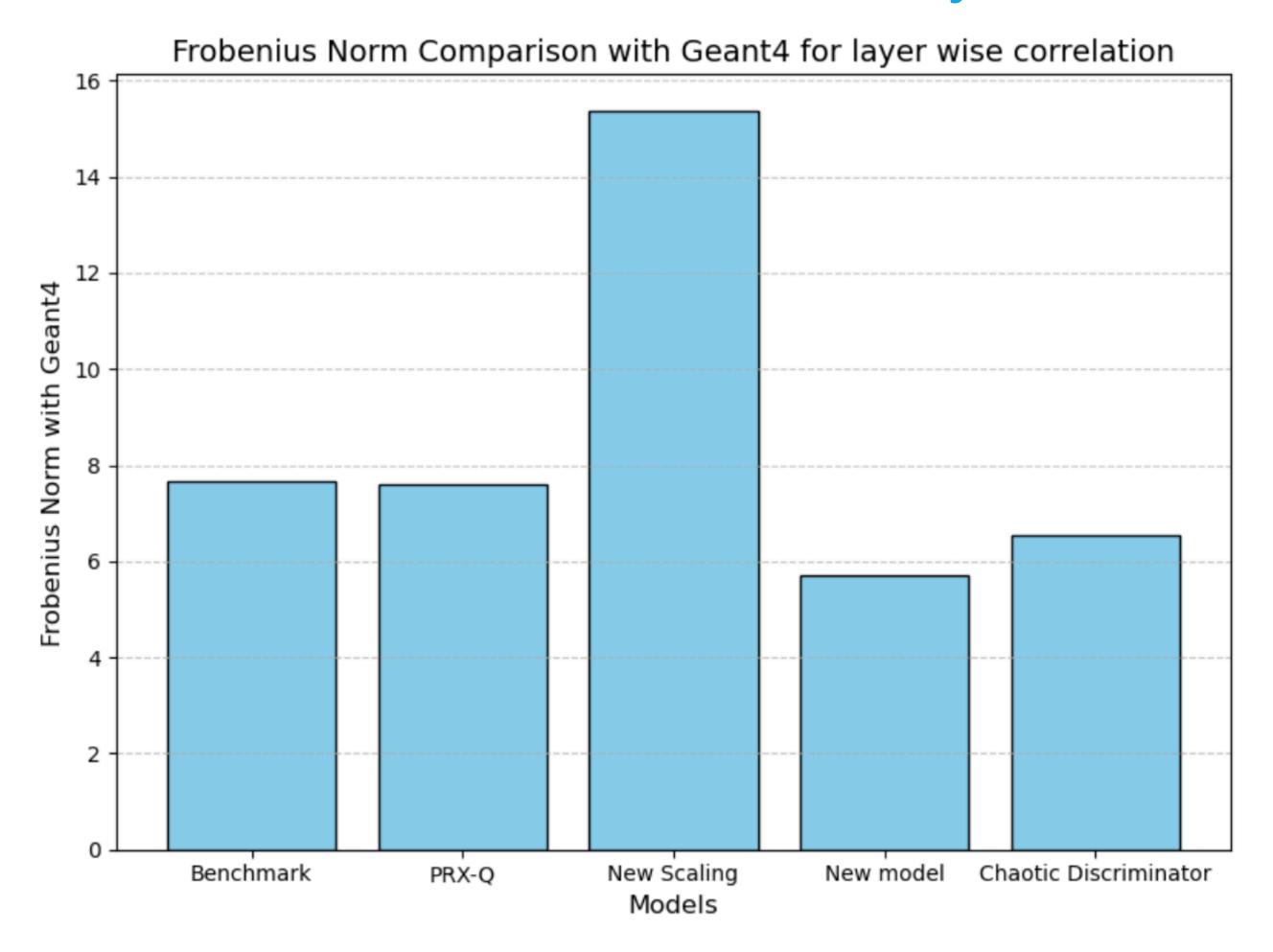
Code written and shared by Farzana

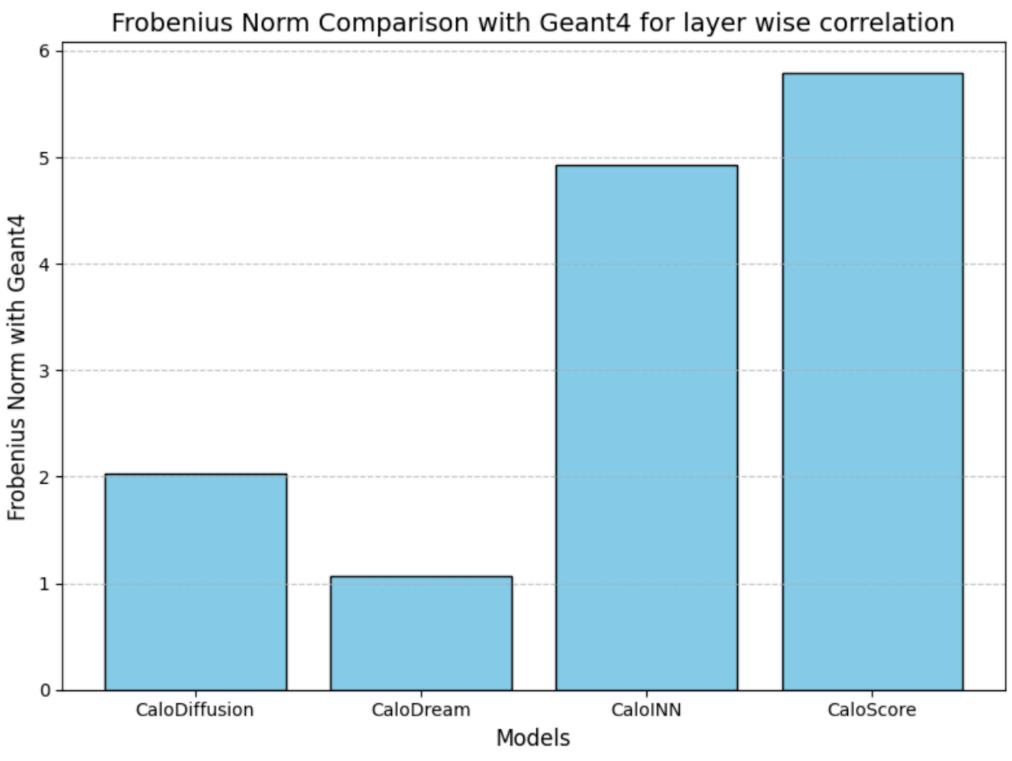




Frobenius metric

Code written and shared by Farzana

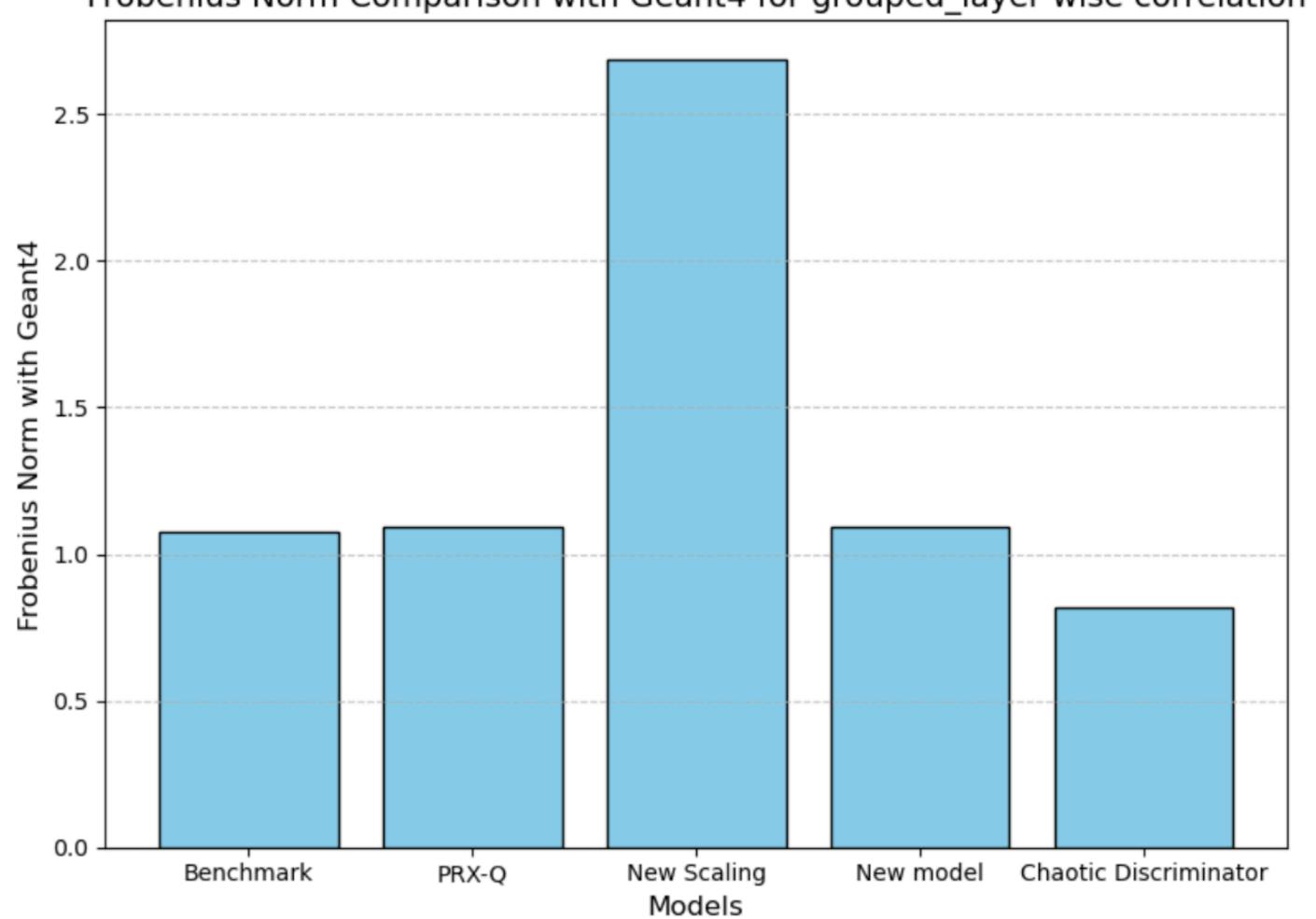


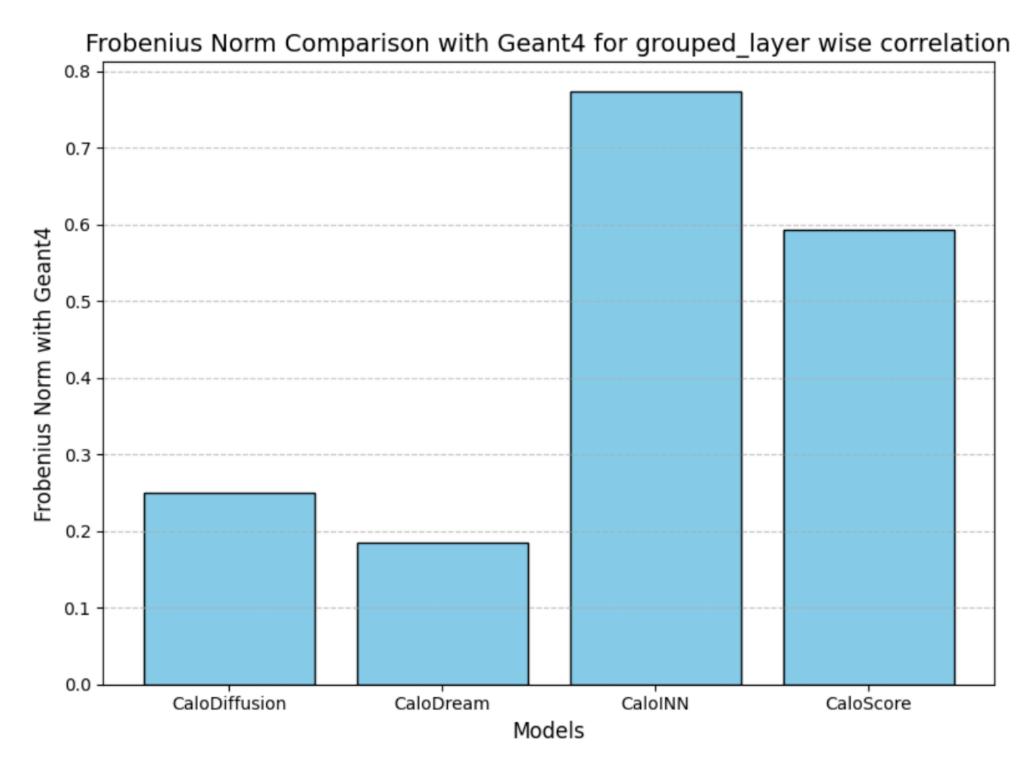


Frobenius metric

Code written and shared by Farzana

Frobenius Norm Comparison with Geant4 for grouped_layer wise correlation





Definitions

◆Auto-correlation function (ACF). <> is average over ensemble

$$ACF(t,\tau) = \langle (f(t+\tau) - \langle f(t+\tau) \rangle)(f(t) - \langle f(t) \rangle)$$

Normalized ACF

$$ACF_{N}(t,\tau) = \frac{ACF(t,\tau)}{\langle f(t)^{2} \rangle - \langle f(t) \rangle^{2}}$$

Time-average Normalized ACF

$$C(\tau) \equiv ACF_N(\tau) = \frac{1}{t_{max} - \tau} \sum_{t=0}^{t_{max} - \tau - 1} ACF_N(t, \tau)$$

Magnetization

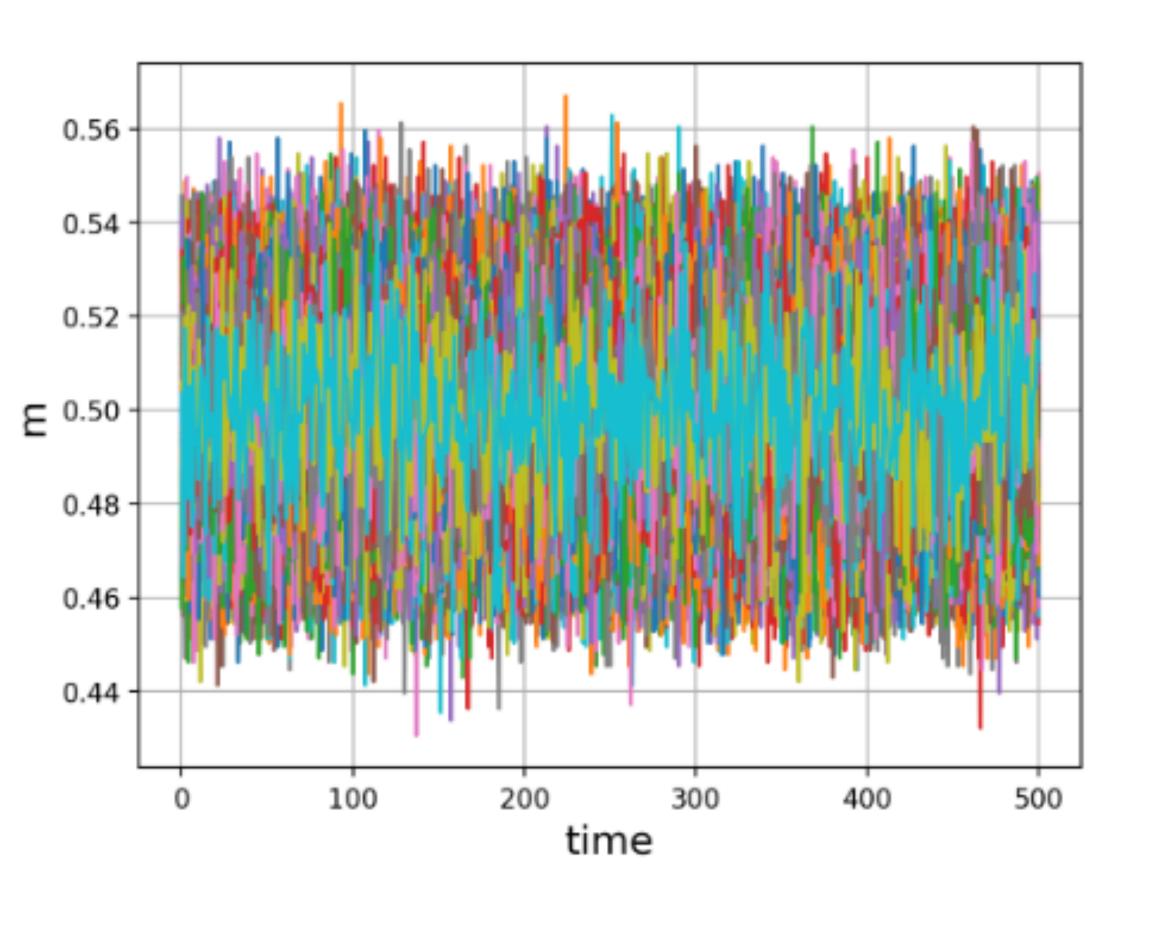
♦ We'll look at the ACF of the magnetization over time.

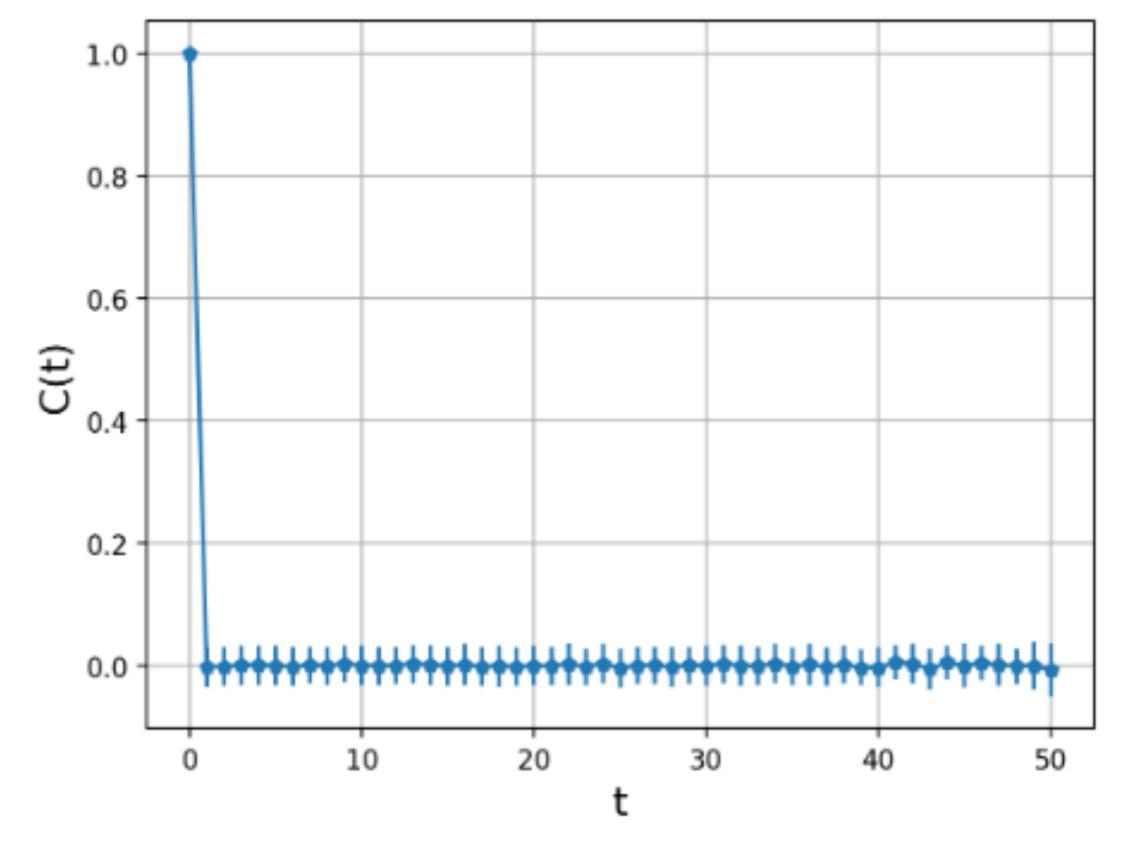
$$f(t) \to m(t) = \frac{1}{N} \sum_{i=1}^{N} \sigma_i(t)$$

 $+\sigma_i(t)$ is the i-th spin value at time t

Simple example: Random Bernoulli-distributed noise 500 time-steps

Ensemble of size 1k



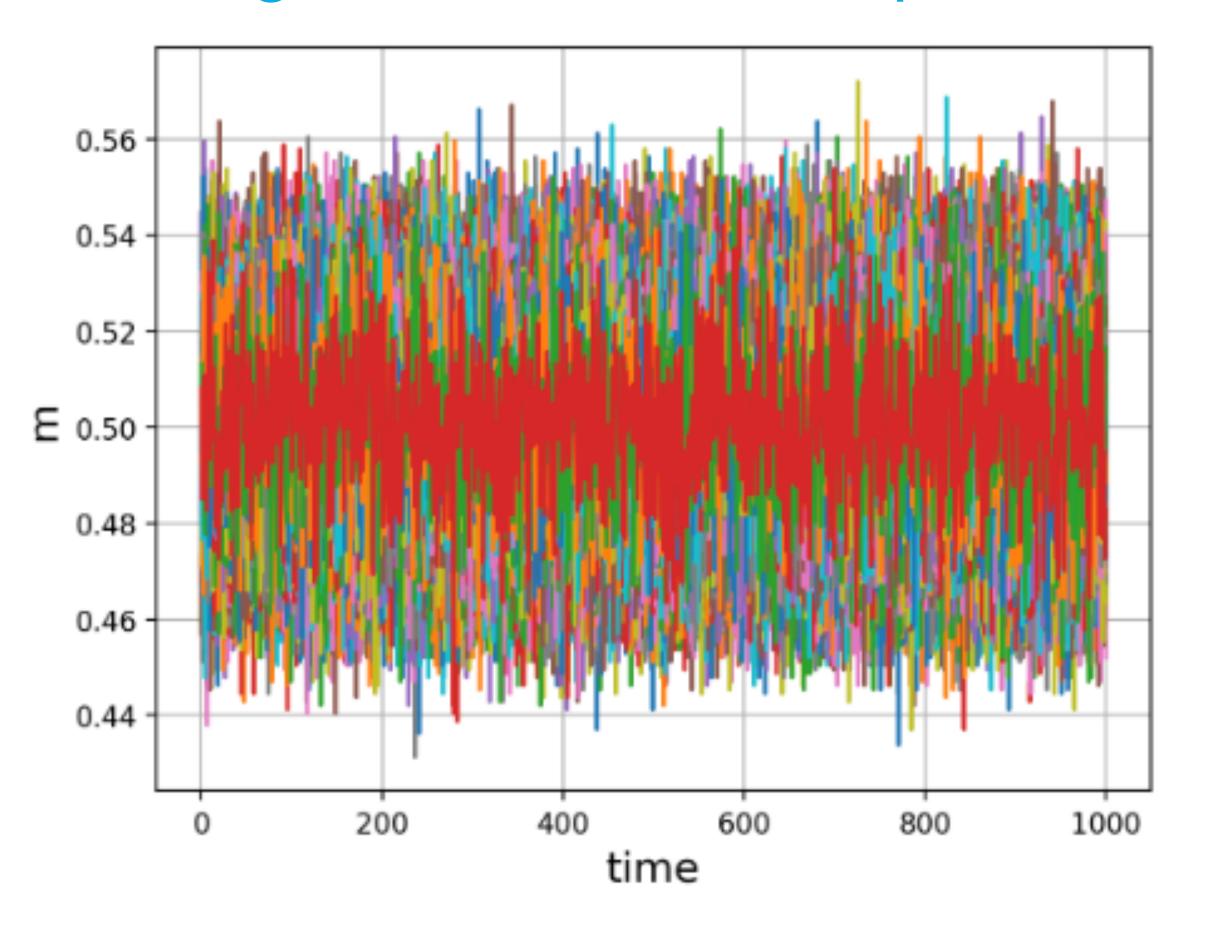


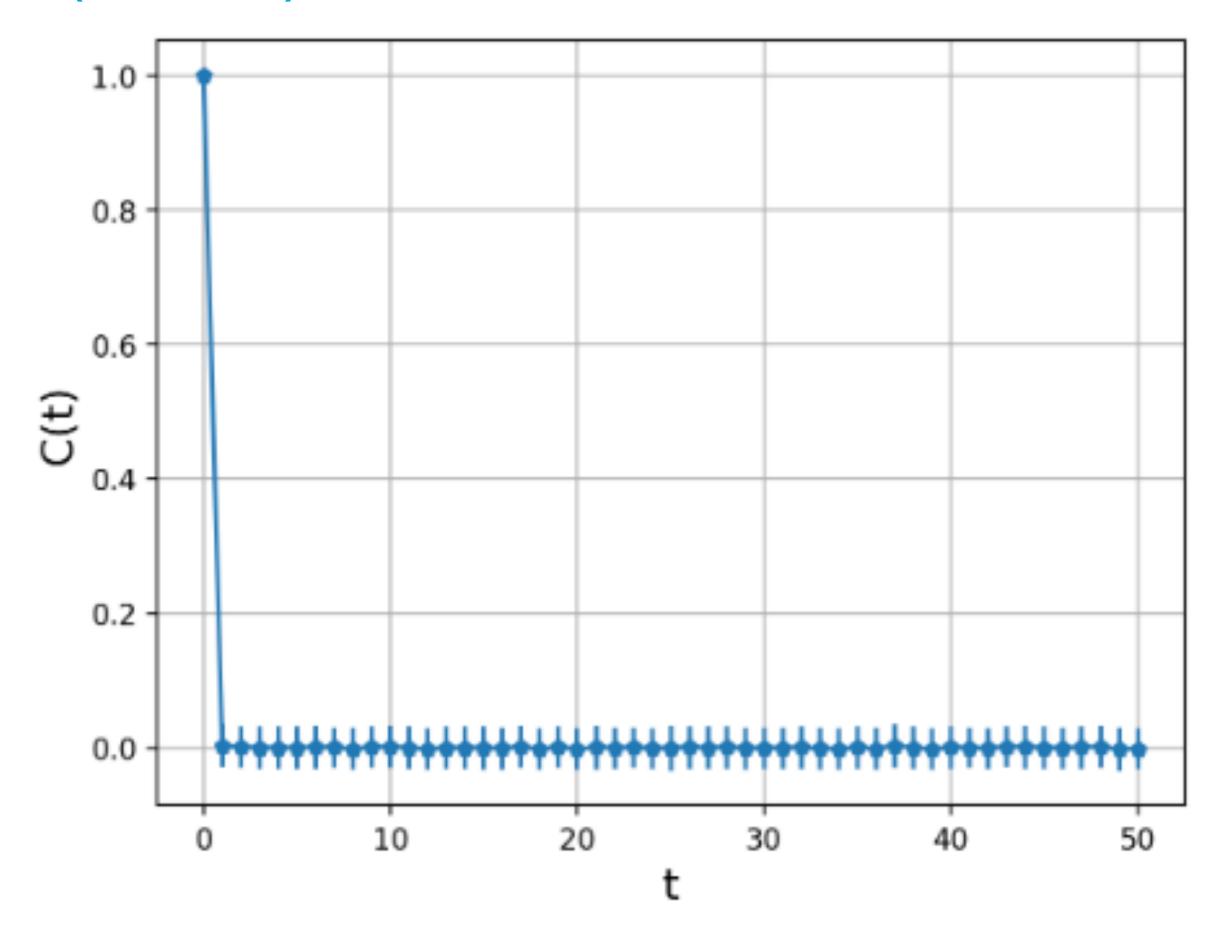
Random Initialized RBM (fully connected)

Weight and biases sampled from N(0,0.01)

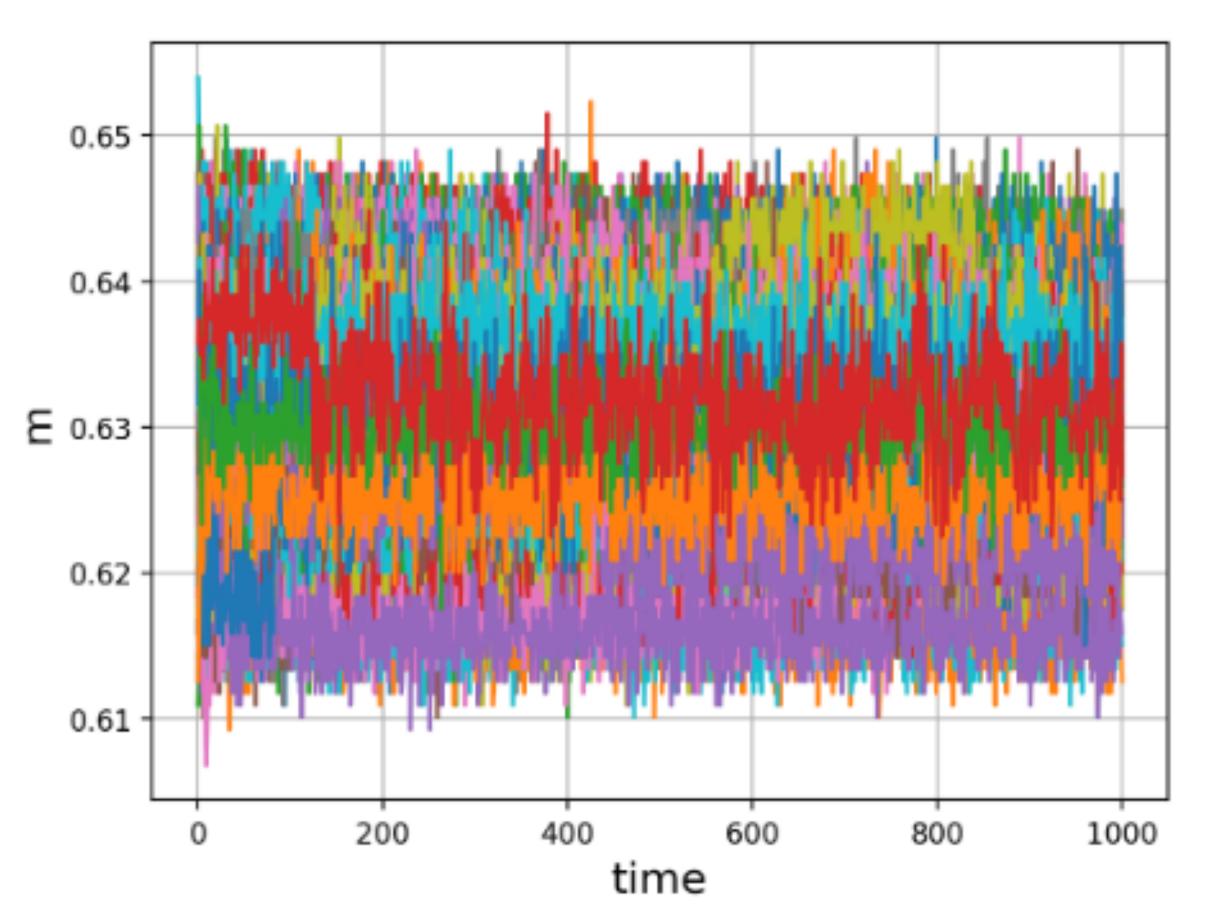
Ensemble of size 100

1000 time-steps





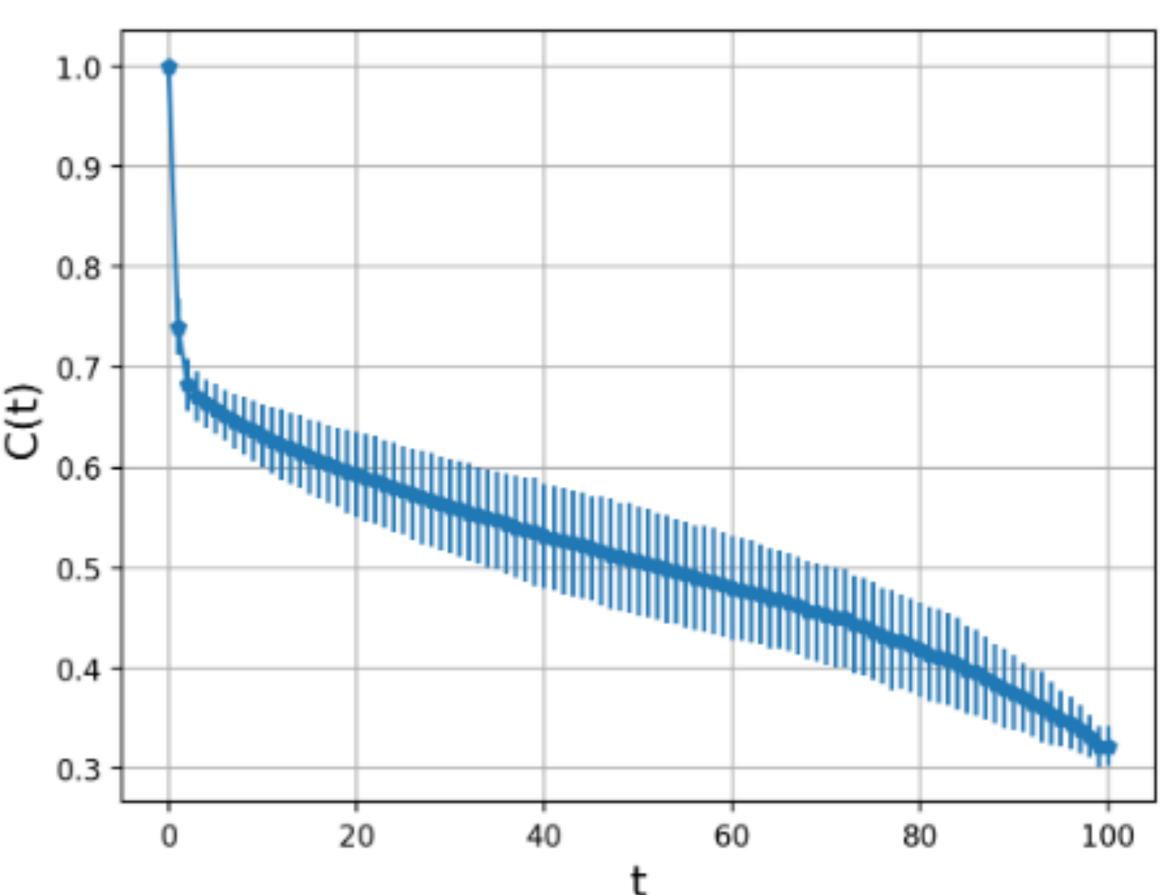
Random Initialized RBM (fully connected)



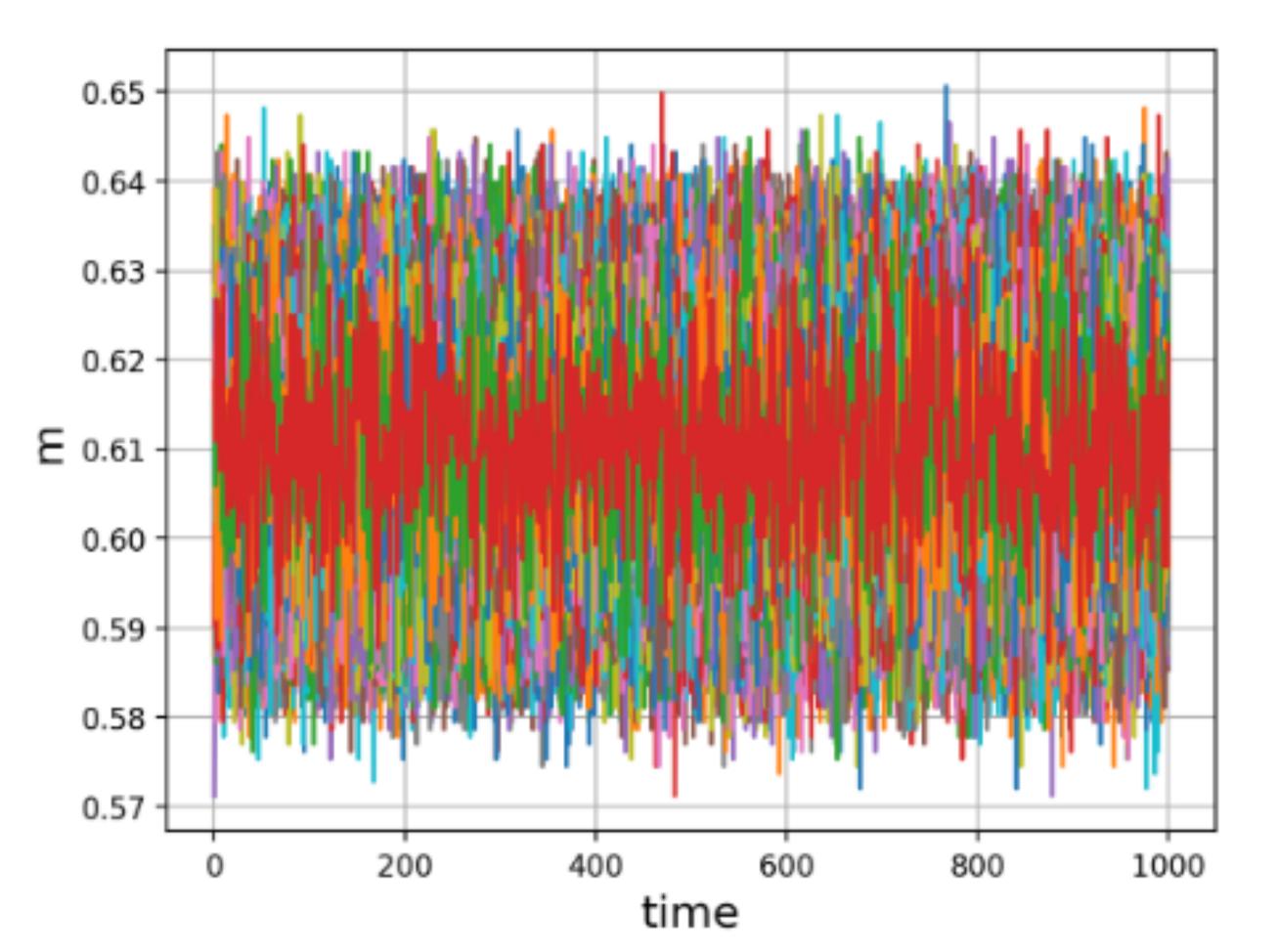
302x4 spins

Ensemble of size 100

1000 time-steps ($\Delta t = 1000$)



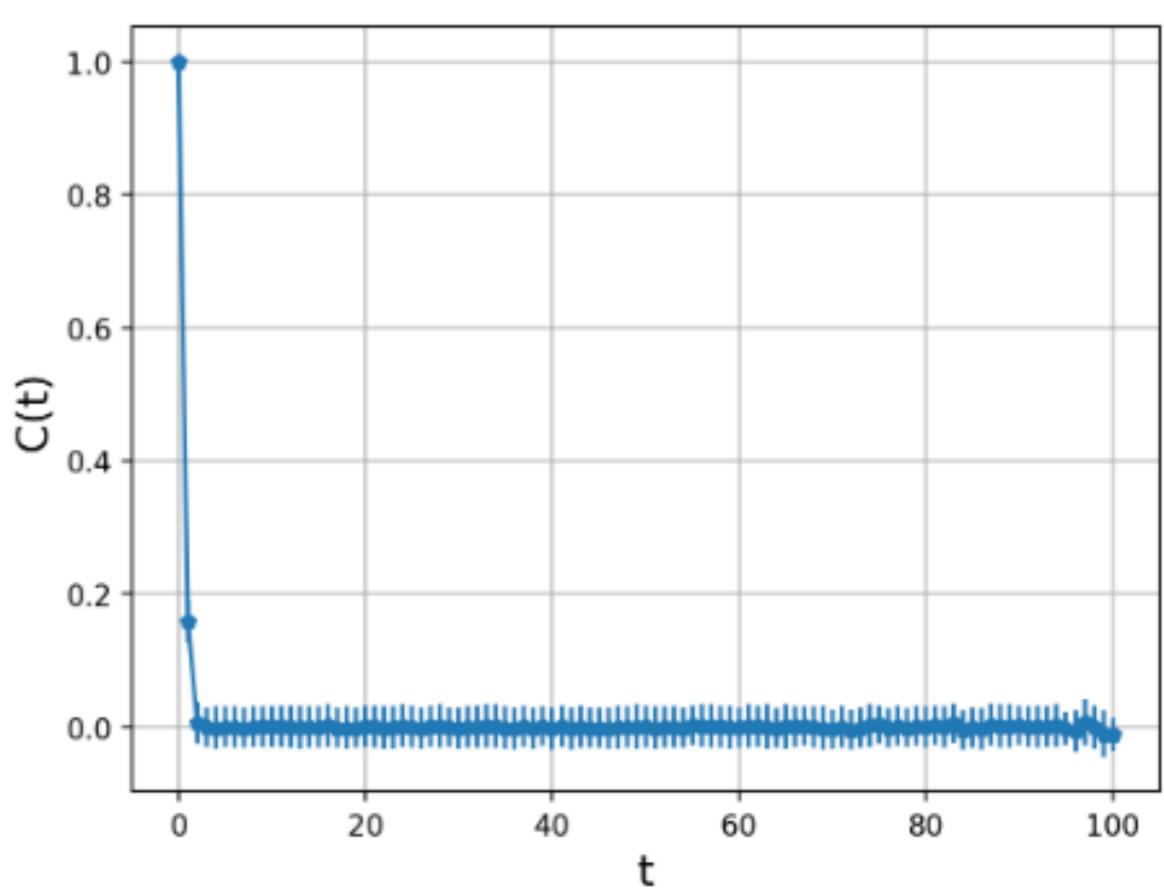
Initialized RBM (Zephyr top)



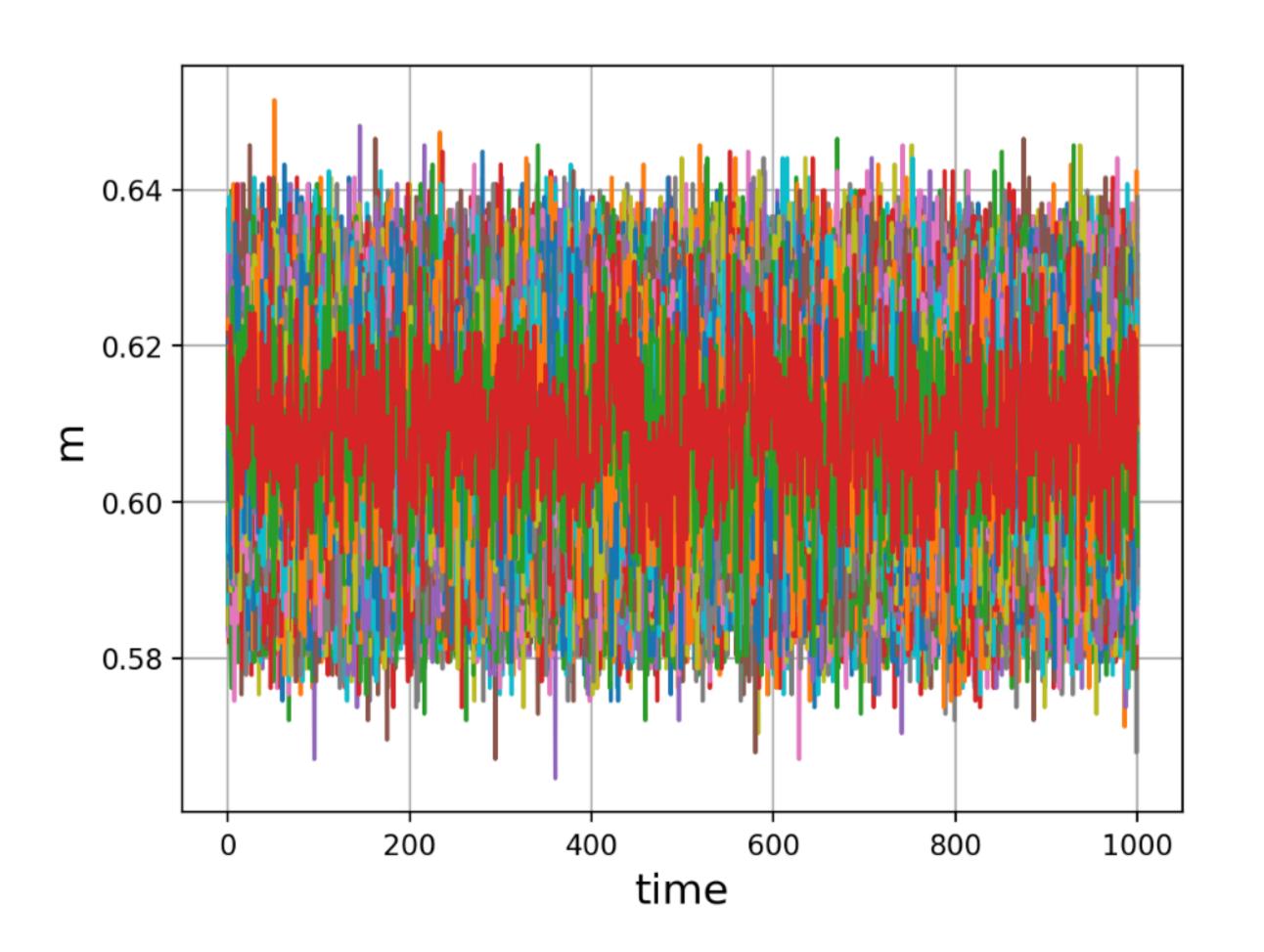
302x4 spins

Ensemble of size 100

1000 time-steps ($\Delta t = 1$)



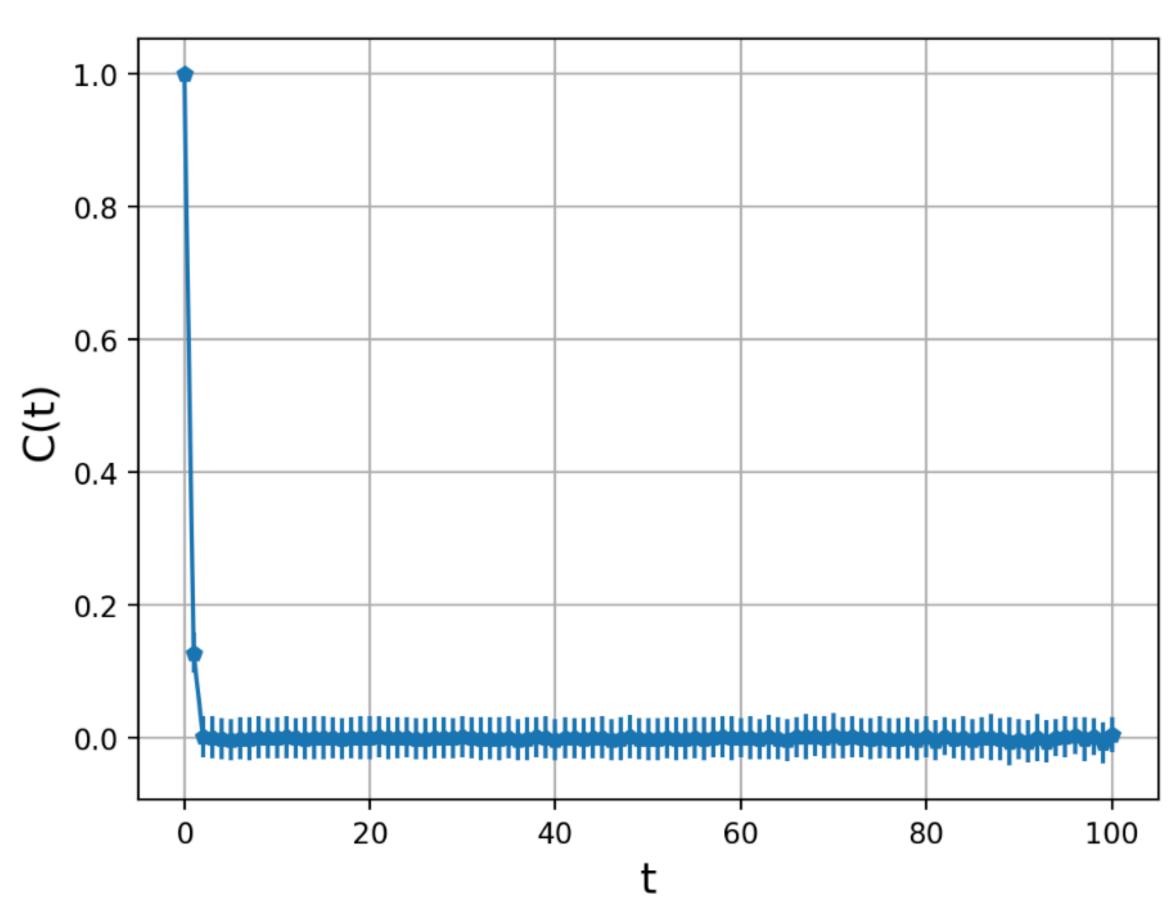
Initialized RBM (Zephyr top) W/ biases=0



302x4 spins

Ensemble of size 100

1000 time-steps ($\Delta t = 1$)

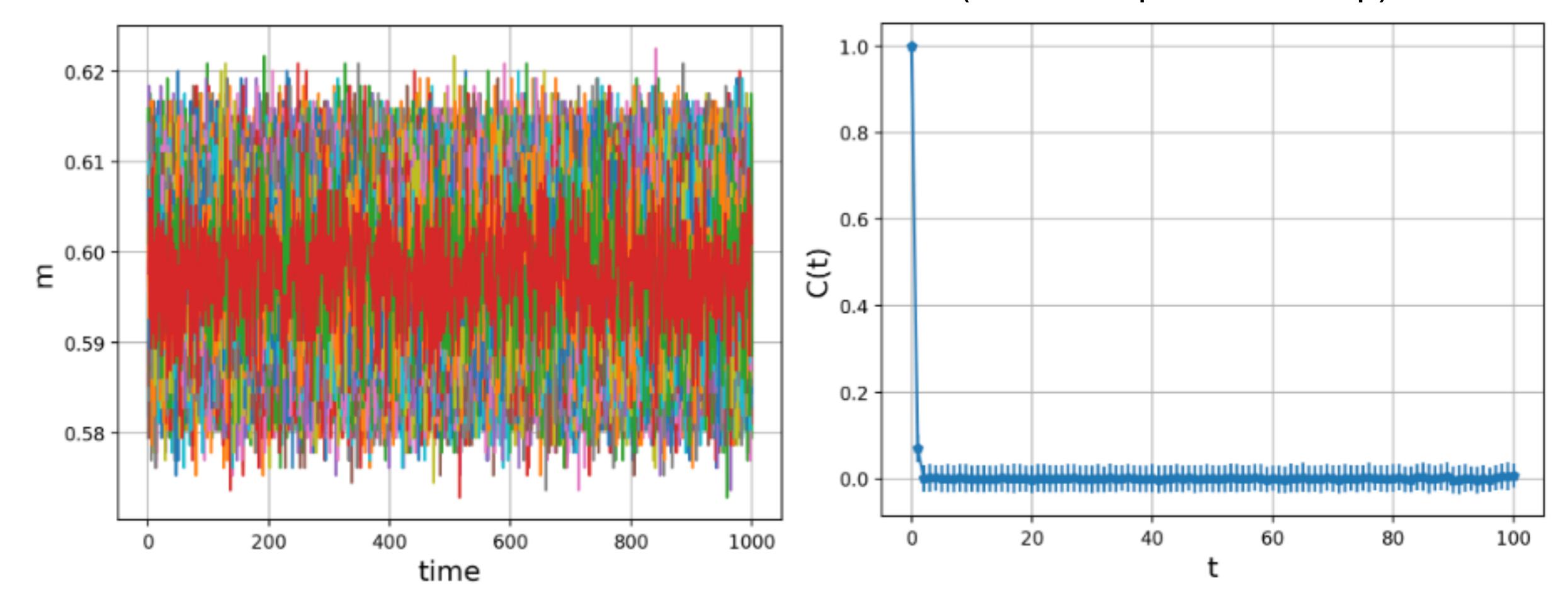


Trained RBM (Zephyr top)
(Making biases=0 yields same result)

302x4 spins

Ensemble of size 100

1000 time-steps ($\Delta t = 1$)



Trained RBM New scheme (Zephyr top) (Making biases=0 yields same result)

302x4 spins

Ensemble of size 100

1000 time-steps ($\Delta t = 1$)

