

ISAC's continuing mission to explore the stars

explore the stars

Alison Laird The University of York

Outline

- Exploring the stars
- ISAC's unique fleet
- The first mission ...
- Pushing the limits
- The continuing mission
- Summary

NuSTAR observations of Cassiopeia A

Image of Cas A from NuSTAR – red shows Fe, blue is Ti, green is Si
⇒ can study relative Ti/Ni yields in specific regions
⇒ explosion is highly asymmetric (also abundance highly asymmetric)
⇒ can use relative yields (not just total) to probe explosion characteristics
⇒ need robust (and consistent) nuclear physics input

²⁶Al in the Galaxy

γ-ray observations

- COMPTEL@CGRO, SPI@INTEGRAL
- synthesised throughout Galaxy
- 2-3 solar masses equilibrium mass
- Doppler shift of line indicates co-rotation with Galaxy

=> Unambiguous direct evidence for nucleosynthesis in stars

Evolution of chemical elements

A. Arcones et al. / Progress in Particle and Nuclear Physics 94 (2017) 1-67

To understand origin and evolution of elements we need to understand the contribution from different stars and explosions, at different times.

8

UNIVERSITY Of Vor

THE

111

To model these stars and stellar explosions, the models need the **thermonuclear reaction rate.**

In the case of individual, narrow resonances dominating the rate, then

$$N_A \langle \sigma v \rangle = 1.54 \times 10^{11} (\mu T_9)^{-3/2} \omega \gamma \exp\left(-11.605 \frac{E_{\rm R}}{T_9}\right)$$

Otherwise we measure the **cross section** over the appropriate energy range (Gamow window) for the temperature of the environment.

ISAC's unique fleet

In the last two decades, ISAC has achieved around **ten direct measurements** for nuclear astrophysics with radioactive beams, as well as a number of indirect studies (see Dr Davids' talk later today). In the last two decades, ISAC has achieved around **ten direct measurements** for nuclear astrophysics with radioactive beams, as well as a number of indirect studies (see Dr Davids' talk later today).

This has only been made possible by:

- ✓ High intensity radioactive beams
- ✓ Beam energies needed for astrophysics
- ✓ High quality beam (energy spread, time spread, purity, etc)
- Dedicated facilities

In the last two decades, ISAC has achieved around **ten direct measurements** for nuclear astrophysics with radioactive beams, as well as a number of indirect studies (see Dr Davids' talk later today).

This has only been made possible by:

- ✓ High intensity radioactive beams
- ✓ Beam energies needed for astrophysics
- ✓ High quality beam (energy spread, time spread, purity, etc)
- ✓ Dedicated facilities

This unique combination has proven extremely powerful for nuclear astrophysics, with many high profile publications...

²¹Na(p, γ)²²Mg Reaction and Oxygen-Neon Novae

S. Bishop,¹ R. E. Azuma,² L. Buchmann,³ A. A. Chen,^{1,*} M. L. Chatterjee,⁴ J. M. D'Auria,^{1,†} S. Engel,⁵ D. Gigliotti,⁶ U. Greife,⁷ M. Hernanz,⁸ D. Hunter,¹ A. Hussein,⁶ D. Hutcheon,³ C. Jewett,⁷ J. José,^{8,9} J. King,² S. Kubono,¹⁰ A. M. Laird,³ M. Lamey,¹ R. Lewis,¹¹ W. Liu,¹ S. Michimasa,¹⁰ A. Olin,^{3,12} D. Ottewell,³ P. D. Parker,¹¹ J. G. Rogers,³ F. Strieder,⁵ and C. Wrede¹

²¹Na(p, γ)²²Mg Reaction and Oxygen-Neon Novae

S. Bishop,¹ R. E. Azuma,² L. Buchmann,³ A. A. Chen,^{1,*} M. L. Chatterjee,⁴ J. M. D'Auria,^{1,†} S. Engel,⁵ D. Gigliotti,⁶ PRL 96, 252501 (2006) PHYSICAL REVIEW LETTERS week ending 30 JUNE 2006

Measurement of the $E_{c.m.} = 184 \text{ keV}$ Resonance Strength in the ${}^{26g}\text{Al}(p, \gamma){}^{27}\text{Si}$ Reaction

C. Ruiz,^{1,*} A. Parikh,^{2,†} J. José,^{3,4} L. Buchmann,¹ J. A. Caggiano,¹ A. A. Chen,⁵ J. A. Clark,² H. Crawford,⁶ B. Davids,¹ J. M. D'Auria,⁶ C. Davis,¹ C. Deibel,² L. Erikson,⁷ L. Fogarty,⁸ D. Frekers,⁹ U. Greife,⁷ A. Hussein,¹⁰ D. A. Hutcheon,¹ M. Huyse,¹¹ C. Jewett,⁷ A. M. Laird,¹² R. Lewis,² P. Mumby-Croft,¹² A. Olin,¹ D. F. Ottewell,¹ C. V. Ouellet,⁵ P. Parker,² J. Pearson,⁵ G. Ruprecht,¹ M. Trinczek,¹ C. Vockenhuber,¹ and C. Wrede²

$^{21}\mathrm{Na}(p,\gamma)^{22}\mathrm{Mg}$ Reaction and Oxygen-Neon Novae

S. Bishop,¹ R. E. Azuma,² L. Buchmann,³ A. A. Chen,^{1,*} M. L. Chatterjee,⁴ J. M. D'Auria,^{1,†} S. Engel,⁵ D. Gigliotti,⁶ PRL 96, 252501 (2006) PHYSICAL REVIEW LETTERS week ending 30 JUNE 2006

Measurement of the $E_{c.m.} = 184 \text{ keV}$ Resonance Strength in the ${}^{26g}\text{Al}(p, \gamma){}^{27}\text{Si}$ Reaction

C. Ruiz,^{1,*} A. Parikh,^{2,†} J. José,^{3,4} L. Buchmann,¹ J. A. Caggiano,¹ A. A. Chen,⁵ J. A. Clark,² H. Crawford,⁶ B. Davids,¹

PRL 110, 262502 (2013) PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

Measurement of Radiative Proton Capture on ¹⁸F and Implications for Oxygen-Neon Novae

C. Akers,^{1,2} A. M. Laird,² B. R. Fulton,² C. Ruiz,¹ D. W. Bardayan,³ L. Buchmann,¹ G. Christian,¹ B. Davids,¹ L. Erikson,⁴ J. Fallis,¹ U. Hager,⁵ D. Hutcheon,¹ L. Martin,¹ A. St. J. Murphy,⁶ K. Nelson,⁷ A. Spyrou,^{8,9} C. Stanford,¹⁰ D. Ottewell,¹ and A. Rojas¹

²¹Na(p, γ)²²Mg Reaction and Oxygen-Neon Novae

S. Bishop,¹ R. E. Azuma,² L. Buchmann,³ A. A. Chen,^{1,*} M. L. Chatterjee,⁴ J. M. D'Auria,^{1,†} S. Engel,⁵ D. Gigliotti,⁶ PRL 96, 252501 (2006) PHYSICAL REVIEW LETTERS week ending 30 JUNE 2006

Measurement of the $E_{c.m.} = 184$ keV Resonance Strength in the ${}^{26g}Al(p, \gamma){}^{27}Si$ Reaction

C. Ruiz,^{1,*} A. Parikh,^{2,†} J. José,^{3,4} L. Buchmann,¹ J. A. Caggiano,¹ A. A. Chen,⁵ J. A. Clark,² H. Crawford,⁶ B. Davids,¹

PRL 110, 262502 (2013) PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

Measurement of Radiative Proton Capture on ¹⁸F and Implications for Oxygen-Neon Novae

C Akors ^{1,2} A M Lai	rd ² P P Fulton ² C P uiz ¹ D W Pardayan ³ I P uchme	nn ¹ G. Christian ¹
PRL 116, 132701 (2016)	PHYSICAL REVIEW LETTERS	week ending 1 APRIL 2016

Direct Measurement of the Astrophysical ${}^{38}K(p,\gamma){}^{39}Ca$ Reaction and Its Influence on the Production of Nuclides toward the End Point of Nova Nucleosynthesis

G. Lotay,^{1,2,*} G. Christian,^{3,†} C. Ruiz,³ C. Akers,^{3,4,‡} D. S. Burke,⁵ W. N. Catford,¹ A. A. Chen,⁵ D. Connolly,⁶ B. Davids,³ J. Fallis,³ U. Hager,^{6,§} D. A. Hutcheon,³ A. Mahl,⁶ A. Rojas,³ and X. Sun^{3,7}

²¹Na(p, γ)²²Mg Reaction and Oxygen-Neon Novae

S. Bishop,¹ R. E. Azuma,² L. Buchmann,³ A. A. Chen,^{1,*} M. L. Chatterjee,⁴ J. M. D'Auria,^{1,†} S. Engel,⁵ D. Gigliotti,⁶ PRL 96, 252501 (2006) PHYSICAL REVIEW LETTERS week ending 30 JUNE 2006

Measurement of the $E_{c.m.} = 184 \text{ keV}$ Resonance Strength in the ${}^{26g}\text{Al}(p, \gamma){}^{27}\text{Si}$ Reaction

C. Ruiz,^{1,*} A. Parikh,^{2,†} J. José,^{3,4} L. Buchmann,¹ J. A. Caggiano,¹ A. A. Chen,⁵ J. A. Clark,² H. Crawford,⁶ B. Davids,¹

PRL 110, 262502 (2013) PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

Measurement of Radiative Proton Capture on ¹⁸F and Implications for Oxygen-Neon Novae

C Alters 1,2 A M L aird 2	P P Fulton ² C P uiz ¹ D W P ordovon ³ I P uchmann ¹	G. Christian ¹
PRL 116, 132701 (2016)	PHYSICAL REVIEW LETTERS	week ending 1 APRIL 2016

Direct Measurement of th	e Astrophysica	l ³⁸ K(<i>p</i> ,γ) ³⁹	Ca Reaction	and Its Influence on the
PRL 119, 242701 (2017)	PHYSICAL	REVIEW	LETTERS	15 DECEMBER 2017

Direct Measurement of the Key $E_{c.m.} = 456$ keV Resonance in the Astrophysical ${}^{19}Ne(p,\gamma){}^{20}Na$ Reaction and Its Relevance for Explosive Binary Systems

R. Wilkinson,¹ G. Lotay,^{1,2} A. Lennarz,³ C. Ruiz,³ G. Christian,^{4,5,6} C. Akers,^{3,*} W. N. Catford,¹ A. A. Chen,⁷ D. Connolly,³ B. Davids,³ D. A. Hutcheon,³ D. Jedrejcic,⁸ A. M. Laird,⁹ L. Martin,³ E. McNeice,⁷ J. Riley,⁹ and M. Williams^{3,9}

In the last two decades, ISAC has achieved around **ten direct measurements** for nuclear astrophysics, as well as a number of indirect studies (see Dr Davids' talk later today).

This has only been made possible by:

- ✓ High intensity radioactive beams
- ✓ Beam energies needed for astrophysics
- ✓ High quality beam (energy spread, time spread, purity, etc)
- ✓ Dedicated facilities

This unique combination has proven extremely powerful for nuclear astrophysics, with many high profile publications.

Indeed, several stable beam measurements have also resulted in high profile papers.

Measurement of the Cascade Transition via the First Excited State of ¹⁶O in the ¹²C(α , γ)¹⁶O Reaction, and Its S Factor in Stellar Helium Burning

C. Matei,¹ L. Buchmann,^{2,*} W. R. Hannes,³ D. A. Hutcheon,² C. Ruiz,⁴ C. R. Brune,¹ J. Caggiano,² A. A. Chen,⁵ J. D'Auria,⁴ A. Laird,^{2,†} M. Lamey,^{4,‡} ZH. Li,^{2,§} WP. Liu,⁶ A. Olin,² D. Ottewell,² J. Pearson,⁵ G. Ruprecht,² M. Trinczek,² C. Vockenhuber,⁴ and C. Wrede^{4,||}

Measurement of the Cascade Transition via the First Excited State of ¹⁶O in the ¹²C(α , γ)¹⁶O Reaction, and Its S Factor in Stellar Helium Burning

C. Matei,¹ L. Buchmann,^{2,*} W. R. Hannes,³ D. A. Hutcheon,² C. Ruiz,⁴ C. R. Brune,¹ J. Caggiano,² A. A. Chen,⁵ J. D'Auria,⁴ A. Laird,^{2,†} M. Lamey,^{4,‡} ZH. Li,^{2,§} WP. Liu,⁶ A. Olin,² D. Ottewell,² J. Pearson,⁵ G. Ruprecht,² M. Trinczek,² C. Vockenhuber,⁴ and C. Wrede^{4,||}

PRL 115, 052702 (2015) PHYSIC

PHYSICAL REVIEW LETTERS

week ending 31 JULY 2015

Measurement of ${}^{23}Na(\alpha,p){}^{26}Mg$ at Energies Relevant to ${}^{26}Al$ Production in Massive Stars

J. R. Tomlinson,^{1,*} J. Fallis,² A. M. Laird,¹ S. P. Fox,¹ C. Akers,^{1,2,†} M. Alcorta,² M. A. Bentley,¹ G. Christian,² B. Davids,² T. Davinson,³ B. R. Fulton,¹ N. Galinski,² A. Rojas,² C. Ruiz,² N. de Séréville,⁴ M. Shen,² and A. C. Shotter³

Detector of Recoils And Gammas Of Nuclear reactions

The DRAGON recoil separator

THE UNIVERSITY OF VOR

What makes DRAGON unique?

BGO array

Windowless gas target

Focal plane PID 👦

What makes DRAGON unique?

DRAGON gas target

Windowless, differentially pumped, recirculating gas target (H₂ or He) 1-10 mbar (pumping constraints) $\rightarrow \leq 6 \times 10^{18}$ at/cm² H₂

LN₂ cooled zeolite cleaning trap

BGO Array

THE UNIVERSITY OF VORK

BGO array 'tags' recoil at focal plane. Very high efficiency (40-90%!).

Use BGO crystal z-coordinate to extract resonance position within extended gas target.

Focal plane detectors - PID

Versatile charged particle detection, based on silicon strip detector and highlinearity, low noise electronics.

Highly configurable setup, can be optimised for reaction under study. High efficiency, high resolution. 512 separate detector channels, giving energy, timing and angle/position. And, of course, the copper shack!

In the beginning....

In the beginning.... there was ²¹Na...and lots of it!

21 Na(p, γ) 22 Mg for 22 Na production in Classical Novae

VOLUME 90, NUMBER 16

PHYSICAL REVIEW LETTERS

week ending 25 APRIL 2003

²¹Na(p, γ)²²Mg Reaction and Oxygen-Neon Novae

S. Bishop,¹ R. E. Azuma,² L. Buchmann,³ A. A. Chen,^{1,*} M. L. Chatterjee,⁴ J. M. D'. U. Greife,⁷ M. Hernanz,⁸ D. Hunter,¹ A. Hussein,⁶ D. Hutcheon,³ C. Jewett,⁷ J. J A. M. Laird,³ M. Lamey,¹ R. Lewis,¹¹ W. Liu,¹ S. Michimasa,¹⁰ A. Olin,^{3,12} D. Ottew F. Strieder,⁵ and C. Wrede¹ PHYSICAL REVIEW C 69, 065803 (2004)

The ²¹Na(p, γ)²²Mg reaction from $E_{c.m.}$ =200 to 1103 keV in novae and x-ray bursts

J. M. D'Auria,¹ R. E. Azuma,² S. Bishop,^{1,*} L. Buchmann,³ M. L. Chatterjee,⁴ A. A. Chen,⁵ S. Engel,⁶ D. Gigliotti,⁷
U. Greife,⁸ D. Hunter,^{1,†} A. Hussein,⁷ D. Hutcheon,³ C. C. Jewett,⁸ J. José,^{9,10} J. D. King,² A. M. Laird,^{3,‡} M. Lamey R. Lewis,¹¹ W. Liu,¹ A. Olin,³ D. Ottewell,³ P. Parker,¹¹ L. Rogers,³ C. Ruiz,¹ M. Trinczek,³ and C. Wrede^{1,§}

0

 (1^{-1})

 2^{\dagger}

21 Na(p, γ) 22 Mg for 22 Na production in Classical Novae

week ending 25 APRIL 2003

VOLUME 90, NUMBER 16

Mg

(p<u>,</u>γ)

(p<u>,y)</u> '

^{|21}Na [|]

²⁰Ne

21 Na(p, γ)²²Mg Reaction and Oxygen-Neon N

PHYSICAL REVIEW LETTERS

S. Bishop,¹ R. E. Azuma,² L. Buchmann,³ A. A. Chen,^{1,*} M. L. Chatterjee,⁴ J. M. D¹ U. Greife,⁷ M. Hernanz,⁸ D. Hunter,¹ A. Hussein,⁶ D. Hutcheon,³ C. Jewett,⁷ J. J
A. M. Laird,³ M. Lamey,¹ R. Lewis,¹¹ W. Liu,¹ S. Michimasa,¹⁰ A. Olin,^{3,12} D. Ottew F. Strieder,⁵ and C. Wrede¹

24

23

 $2^{2}N$

e(p,α)

Mg

(p, y

(p,y)

^{|22}Na |

²¹Ne

PHYSICAL REVIEW C 69, 065803 (2004)

The ²¹Na(p, γ)²²Mg reaction from $E_{c.m.}$ =200 to 1103 keV in novae and x-ray bursts

J. M. D'Auria,¹ R. E. Azuma,² S. Bishop,^{1,*} L. Buchmann,³ M. L. Chatterjee,⁴ A. A. Chen,⁵ S. Engel,⁶ D. Gigliotti,⁷ U. Greife,⁸ D. Hunter,^{1,†} A. Hussein,⁷ D. Hutcheon,³ C. C. Jewett,⁸ J. José,^{9,10} J. D. King,² A. M. Laird,^{3,‡} M. Lamey, Conclusions: model predictions for

Oxygen-Neon Novae became consistent with upper limits of ²²Na observations...

Maximum detectability distance determined to be 1 kiloparsec for ²²Na from these novae.

Nuclear Physics of Star, C. Iliadis J. Wiley & Sons, 2007

PHYSICS TEXTBOOK

WILEY-VCH

Nuclear Physics of Stars

The Textbook case

Fig. 12 The nuclear astrophysics facilities of ISAC at the TRIUMF laboratory in Vancouver, Canada. The radioactive ion beam exits the accelerator in the top lefthand corner of the photo and enters either the **DRAGON** recoil spectrometer or the TUDA beamline. For radiative proton- and α capture reactions, the 21-m long **DRAGON** facility (photo, center) is used. The drawing shows the major components of **DRAGON**, including the windowless gas target surrounded by a 30-element γ -ray detection array, the two independent stages of electromagnetic separators that suppress the beam by a factor of $< 10^{13}$, and the appropriately configured recoil detector. For other nonradiative-capture measurements, such as direct reactions and elastic or inelastic scattering, TUDA is employed. The TUDA chamber and shielded electronics room (photo, right-hand side) allow for multiple arrangements of various detectors specifically chosen for the reaction of interest. Credit: Dave Hutcheon, Chris Ruiz, Götz Ruprecht, Mike Trinczek, Christof Vockenhuber and TRIUMF.

The Textbook case

4.6 Miscellaneous Experimental Techniques 311

THE UNIVERSITY OF VORK

Fig. 4.41 Pulse height spectrum of heavy ions detected at the focal plane of a recoil separator in the study of the $E_{\tau}^{cm} = 207 \text{ keV}$ resonance in ²¹Na(p, γ)²²Mg. The dashed histogram shows the singles spectrum and is dominated by ²¹Na beam particles leaking through the separator. The shaded spectrum displays those heavy ions which are in coincidence with prompt γ -rays detected in a BGO array surrounding the hydrogen gas target. These correspond to the reaction products ²²Mg since ²¹Na beam particles are not in coincidence with prompt γ-rays. Reprinted with permission from J. M. D'Auria et al., Phys. Rev. C. Vol. 69, 065803

(2004). Cop Physical So

The ²¹Na(p, γ)²²Mg reaction is important for the production of the longlived γ -ray emitter ²²Na in classical novae (Section 5.2.2). The reaction was directly measured (D'Auria et al. 2004) at the TRIUMF-ISAC facility (see color Fig. 12 on page 642), located in Vancouver, Canada, in the energy range of the nova Gamow peak ($E_0 \pm \Delta/2 = 270 \pm 100$ keV at T = 0.3 GK). A 500 MeV proton beam of ≤ 30 µA intensity from the TRIUMF cyclotron bombarded a thick SiC production target. Spallation reactions on Si produced ²¹Na which diffused from the hot target through a transfer tube and was ionized in a surface ionization source. After mass separation, the low-energy ²¹Na beam was accelerated to energies variable between 0.15 and 1.5 MeV/u by using a radiofrequency quadrupole (RFQ) accelerator and a drift-tube linac. The intensity of the 21Na beam delivered to the experiment amounted up to 109 21Na ions per second. The radioactive 21Na beam was then incident on a windowless hydrogen gas target. Prompt γ -rays were detected in an array of 30 BGO scintillator detectors, packed tightly around the gas target, with an almost 4π coverage of the solid angle. The 22Mg nuclei were separated from the intense beam by using the DRAGON recoil separator (Engel et al. 2005) and were de-

DRAGON highlights

²⁶Al(p,γ)²⁷Si: ²⁶Al galactic map

PRL 96, 252501 (2006)

Measurement of the $E_{c.m.} = 184$ keV Resonance Strength in the ${}^{26g}Al(p, \gamma){}^{27}Si$ Reaction

PHYSICAL REVIEW LETTERS

C. Ruiz,^{1,*} A. Parikh,^{2,†} J. José,^{3,4} L. Buchmann,¹ J. A. Caggiano,¹ A. A. Chen,⁵ J. A. Clark,² H. Crawford,⁶ B. Davids,¹ J. M. D'Auria,⁶ C. Davis,¹ C. Deibel,² L. Erikson,⁷ L. Fogarty,⁸ D. Frekers,⁹ U. Greife,⁷ A. Hussein,¹⁰ D. A. Hutcheon,¹ M. Huyse,¹¹ C. Jewett,⁷ A. M. Laird,¹² R. Lewis,² P. Mumby-Croft,¹² A. Olin,¹ D. F. Ottewell,¹ C. V. Ouellet,⁵ P. Parker,² J. Pearson,⁵ G. Ruprecht,¹ M. Trinczek,¹ C. Vockenhuber,¹ and C. Wrede²

week ending 30 JUNE 2006

FIG. 8. (Color online) Excitation function of the 40 Ca(α, γ) 44 Ti reaction measured at DRAGON. Data sets at 4 and 8 Torr are indicated in different shades, and the connecting lines are only to guide the eye. The yield at each measurement point depends on how many narrow resonances are hit, and thus overlapping bars at different pressures agree with each other only if the same resonances are hit in both cases. At the four lowest energies we observed only upper limits. For comparison, vertical lines indicate known resonance strengths from prompt γ -ray studies.

FIG. 8. (Color online) Excitation function of the ${}^{40}Ca(\alpha, \gamma){}^{44}Ti$ reaction measured at DRAGON. Data sets at 4 and 8 Torr are indicated in different shades, and the connecting lines are only to guide the eye. The yield at each measurement point depends on how many narrow resonances are hit, and thus overlapping bars at different pressures agree with each other only if the same resonances are hit in both cases. At the four lowest energies we observed only upper limits. For comparison, vertical lines indicate known resonance strengths from prompt γ -ray studies.

THE UNIVERSITY O

³⁸K(p,γ)³⁹Ca for Ca/Ar production in Classical Novae

gestion Featured in Physic

Direct measurement of astrophysically important resonances in ${}^{38}K(p,\gamma){}^{39}Ca$

G. Christian,^{1,2,*} G. Lotay,^{3,†} C. Ruiz,² C. Akers,^{2,4,‡} D. S. Burke,⁵ W. N. Catford,³ A. A. Chen,⁵ D. Connolly,^{6,§} B. Davids,² J. Fallis,^{2,¶} U. Hager,⁶ D. Hutcheon,² A. Mahl,⁶ A. Rojas,² and X. Sun^{2,7,**}

Synopsis: Intel on Stellar Element Production from Accelerator Data

ABOUT BROWSE PRESS COLLECTIONS

February 21, 2018

Physics

Measurements of a nuclear reaction relevant to the synthesis of calcium, potassium, and argon in stars boost the accuracy of models for predicting the elements' abundances.

³⁸K(p,γ)³⁹Ca for Ca/Ar production in Classical Novae

estion Featured in Phy

Direct measurement of astrophysically important resonances in ${}^{38}K(p,\gamma){}^{39}Ca$

G. Christian,^{1,2,*} G. Lotay,^{3,†} C. Ruiz,² C. Akers,^{2,4,‡} D. S. Burke,⁵ W. N. Catford,³ A. A. Chen,⁵ D. Connolly,^{6,§} B. Davids,² J. Fallis,^{2,¶} U. Hager,⁶ D. Hutcheon,² A. Mahl,⁶ A. Rojas,² and X. Sun^{2,7,**}

45

 -4^{38} Ar $\cdot \cdot 4^{39}$ K -4^{40} Ca

TUDA highlights

¹⁸F(p, α)¹⁵O for ¹⁸F destruction in classical novae

THE UNIVERSITY OF YORK

THE UNIVERSITY OF YORK

The ¹⁸F(p, α)¹⁵O data

²³Na(α,p)²⁶Mg – ²⁶Al in massive stars

Gas cell target:

THE UNIVERSITY OF VOR

I 10 Torr of ⁴He.
Entrance window 2.5 um Nickel.
Exit window 6 um Nickel.
Cell length window to window = 2cm.

Silicon Detector Arrays:
DE-E2 covers ~ 9° - 39°
DE-EI covers ~ 3° - 8.9°

PD on target ladder to measure energy loss through window material at each incident beam energy.

THE UNIVERSITY OF VORK

Similar setup used for ${}^{21}Na(\alpha,p){}^{24}Mg$ (publication in preparation) and for planned ${}^{18}Ne(\alpha,p){}^{21}Na$ measurement -> key reaction in X-ray bursts.

Pushing the limits

¹⁸F(p,γ)¹⁹Ne – low intensity limit

FIG. 1. Energy loss vs. energy loss plot obtained from the first two anodes in the IC. The attenuated beam run is shown in black and two well-separated loci are clearly visible signifying the presence of both ¹⁸F and ¹⁸O. Circles (triangles), both red online, correspond to observed ¹⁹Ne (¹⁸F) events when the separator was tuned to recoils. Squares (blue online) correspond to ¹⁹F recoils during the separate ¹⁸O beam run.

Beam intensity ~ 10^6 pps – too low for reliable FC reading. Normalisation using elastic scattering and simulations.

⁵⁸Ni(p,γ)⁵⁹Cu measurement – high mass limits

Fig. 2. Energy loss vs. total energy for (a) singles, (b) recoils coincident with γ -rays (black circles) and (c) recoils coincident with γ -rays with additional condition on separator and MCP time-of-flight (red squares). In panels (b) and (c) the shaded area denotes the singles histogram plotted for reference. Black contour denotes the range of true events

```
Eur. Phys. J. A (2013) 49: X
```

The European Physical Journal A

⁷⁶Se(α , γ)⁸⁰Kr publication in preparation

Radiative capture reactions with heavy beams: extending the capabilities of DRAGON

Anna Simon^{1,a}, Jennifer Fallis³, Artemis Spyrou^{1,2}, Alison M. Laird⁴, Chris Ruiz³, Lothar Buchmann³, Brian R. Fulton⁴, Dave Hutcheon³, Lars Martin³, Dave Ottewell³, and Alex Rojas³

¹ National Superconducting Cyclotron Laboratory, Michigan State University, 640 E Shaw Ln, East Lansing, MI, 48223, USA

² Department of Physics & Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824, USA

³ TRIUMF, 4004 Wesbrook Mall, Vancouver, V6T 2A3, Canada

⁴ Department of Physics, University of York, Heslington, York, YO10 5DD, UK

The impact of ISAC

© 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE EFFECTS OF THERMONUCLEAR REACTION-RATE VARIATIONS ON NOVA NUCLEOSYNTHESIS: A SENSITIVITY STUDY

CHRISTIAN ILIADIS AND ART CHAMPAGNE

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255; and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308; iliadis@unc.edu, aec@tunl.duke.edu

JORDI JOSÉ

Departament de Física i Enginyeria Nuclear (UPC), Avinguda Víctor Balaguer, s/n, E-08800 Vilanova i la Geltrú, Barcelona, Spain; and Institut d'Estudis Espacials de Catalunya, Edifici Nexus-201, Calle Gran Capitá 2-4, E-08034 Barcelona, Spain; jjose@ieec.fcr.es

SUMNER STARRFIELD

Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504; sumner.starrfield@asu.edu

AND

PAUL TUPPER

Scientific Computing–Computational Mathematics Program, Stanford University, Stanford, CA 94305; tupper@sccm.stanford.edu Received 2002 January 19; accepted 2002 April 25

THE ASTROPHYSICAL JOURNAL SUP

© 2002. The American Astronomical Society

TABLE 12

INFLUENCE OF REACTION-RATE VARIATIONS ON ISOTOPIC ABUNDANCES IN NOVA NUCLEOSYNTHESIS^a

THE EFFE	Reaction-Rate Variation ^b	Isotopic Abundance Change ^c	TIONS ON NOVA
		CO Nova Models	
Department of Ph	$^{17}O(p, \gamma)^{18}F$ $^{17}O(p, \alpha)^{14}N$ $^{18}F(p, \alpha)^{15}O$	¹⁸ F ¹⁷ O, ¹⁸ F ¹⁸ F	5; and Triangle Universities ke.edu
Departament de Físi and Institut d'Estudi	22 Ne(p, γ) 23 Na 23 Na(p, γ) 24 Mg 26 Mg(p, γ) 27 Al 26 Alg(p, γ) 27 Si	²² Ne, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Al ²⁴ Mg ²⁶ Mg ²⁶ Al	a i la Geltrú, Barcelona, Spain; ælona, Spain; jjose@ieec.fcr.es
Department o		ner.starrfield@asu.edu	
Scientific Computing	¹⁷ O(p, γ) ¹⁸ F ¹⁷ O(p, α) ¹⁴ N ¹⁷ F(p, γ) ¹⁸ Ne ¹⁸ F(p, α) ¹⁵ O	¹⁷ O, ¹⁸ F ¹⁷ O, ¹⁸ F ¹⁷ O, ¹⁸ F ¹⁶ O, ¹⁷ O, ¹⁸ F)5; tupper@sccm.stanford.edu
	21 Na(p, γ) 22 Mg 22 Ne(p, γ) 23 Na 23 Na(p, γ) 24 Mg	²¹ Ne, ²² Na, ²² Ne ²² Ne ²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Mg, ²⁶ Al, ²⁷ Al	
	$^{23}Mg(p, \gamma)^{24}Al$ $^{26}Mg(p, \gamma)^{27}Al$ $^{26}Alg(p, \gamma)^{27}Si$	²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg ²⁶ Mg ²⁶ A1	
	20 Al ^m (p, γ) ²⁷ S1 29 Si(p, γ) ³⁰ P 30 P(p, γ) ³¹ S 33 S($\gamma = \gamma$) ³⁴ C ¹	²⁰ Mg ²⁹ Si ³⁰ Si, ³² S, ³³ S, ³⁴ S, ³⁵ Cl, ³⁷ Cl, ³⁶ Ar, ³⁷ Ar, ³⁸ Ar	
	$^{33}Cl(p, \gamma)^{34}Ar$ $^{34}S(p, \gamma)^{35}Cl$	³³ S ³⁴ S, ³⁵ Cl, ³⁶ Ar	
	${}^{34}\text{Cl}(p, \gamma){}^{35}\text{Ar}$ ${}^{37}\text{Ar}(p, \gamma){}^{38}\text{K}$ ${}^{38}\text{K}(p, \gamma){}^{39}\text{Ca}$	³⁴ S ³⁷ Cl, ³⁷ Ar, ³⁸ Ar ³⁸ Ar	

THE ASTROPHYSICAL JOURNAL SUP

© 2002. The American Astronomical Society

TABLE 12

INFLUENCE OF REACTION-RATE VARIATIONS ON ISOTOPIC ABUNDANCES IN NOVA NUCLEOSYNTHESIS^a

THE EFFEC	Reaction-Rate Variation ^b	Isotopic Abundance Change ^c	TIONS ON NOVA
	$^{17}O(p_{x})^{18}F$	18 _F	
Department of Ph	$^{17}O(p, \alpha)^{14}N$	17 O , 18 F	5; and Triangle Universities
-	$^{18}F(p, \alpha)^{15}O$	¹⁸ F	ke.edu
	22 Ne(p, γ) 23 Na	²² Ne, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Al	
Departament de Físi	²³ Na(p, γ) ²⁴ Mg	²⁴ Mg	a i la Geltrú, Barcelona, Spain:
and Institut d'Estudi	²⁶ Mg(p, γ) ²⁷ Al	²⁶ Mg	elona, Spain; jjose@ieec.fcr.es
	${}^{26}\text{Alg}(p, \gamma){}^{27}\text{Si}$	²⁶ A1	
Department o		ONe Nova Models	ner.starrfield@asu.edu
	$170(p_{c})^{18}E$	170 18F	
	$^{17}O(p, q)^{14}N$	17O 18E	
Scientific Computing	$^{17}\text{F}(p, \gamma)^{18}\text{Ne}$	^{17}O ^{18}F)5: tupper@sccm stanford edu
Selentine Computing	${}^{18}\mathrm{F}(\mathrm{p},\alpha){}^{15}\mathrm{O}$	¹⁶ O, ¹⁷ O, ¹⁸ F	,, tupper@seem.stumord.edu
	21 Na(p, γ) 22 Mg	²¹ Ne, ²² Na, ²² Ne	
	²² Ne(p, γ) ²³ Na	²² Ne	
	²³ Na(p, γ) ²⁴ Mg	²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg, ²⁵ Mg, ²⁶ Mg, ²⁶ Al, ²⁷ Al	
	²³ Mg(p, γ) ²⁴ Al	²⁰ Ne, ²¹ Ne, ²² Na, ²³ Na, ²⁴ Mg	
	²⁶ Mg(p, γ) ²⁷ Al	²⁶ Mg	
	$^{26}Alg(p, \gamma)^{27}Si$	²⁶ A1	
	²⁶ Al ^m (p, γ) ²⁷ Si	²⁶ Mg	
	29 Si(p, γ) 30 P	²⁹ Si	_
	$^{30}P(p, \gamma)^{31}S$	³⁰ Si, ³² S, ³³ S, ³⁴ S, ³⁵ Cl, ³⁷ Cl, ³⁶ Ar, ³⁷ Ar, ³⁸ Ar	
	$^{33}S(p, \gamma)^{34}Cl$	³³ S, ³⁴ S, ³⁵ Cl, ³⁶ Ar	
	$^{33}Cl(p, \gamma)^{34}Ar$	33S	
	³⁴ S(p, γ) ³⁵ Cl	³⁴ S, ³⁵ Cl, ³⁰ Ar	
	$^{37}\text{Ar}(\mathbf{p}, \gamma)^{38}\text{Ar}$	3701 37 4 - 38 4 -	
	38 K(p, γ) ³⁹ C	38 A -	
	$\kappa(\mathbf{p}, \gamma)$ Ca	Ar	

THE UNIVERSITY OF YORK

The continuing mission

- $^{11}C(p,\gamma)^{12}N$ link between pp-chains and CNO
- ¹⁵O(α,γ)¹⁹Ne alternative approach to ¹⁸F(p, γ)
- $^{18}F(p,\alpha)^{15}O$ reduce uncertainties in ^{18}F destruction
- ¹⁸Ne(α ,p)²¹Na key reaction in X-ray bursts
- ${}^{37}Ar(p,\gamma){}^{38}K$ nova nucleosynthesis

Need to keep developing high intensity ISOL beams. DRAGON and TUDA continue to be competitive.

To be continued X-ray bursts

In X-ray bursts, key (p, γ) and (α ,p) reactions are still to be measured. Sensitivity studies, such as below by Cyburt et al., focus experimental effort.

THE ASTROPHYSICAL JOURNAL, 830:55 (20pp), 2016 October

Table 2 Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Model

Rank	Reaction	Type ^a	Sensitivity ^b
1	$^{15}O(\alpha, \gamma)^{19}Ne$	D	16
2	${}^{56}Ni(\alpha, p){}^{59}Cu$	U	6.4
3	${}^{59}\text{Cu}(\text{p}, \gamma){}^{60}\text{Zn}$	D	5.1
4	${}^{61}\text{Ga}(\text{p}, \gamma){}^{62}\text{Ge}$	D	3.7
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3
6	$^{14}O(\alpha, p)^{17}F$	D	5.8
7	23 Al(p, γ) 24 Si	D	4.6
8	¹⁸ Ne(α , p) ²¹ Na	U	1.8
9	63 Ga(p, γ) 64 Ge	D	1.4
10	19 F(p, α) 16 O	U	1.3
11	$^{12}C(\alpha, \gamma)^{16}O$	U	2.1
12	${}^{26}{\rm Si}(\alpha, p){}^{29}{\rm P}$	U	1.8
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5
14	24 Mg(α , γ) ²⁸ Si	U	1.2
15	⁵⁷ Cu(p, γ) ⁵⁸ Zn	D	1.3
16	60 Zn(α , p) 63 Ga	U	1.1
17	${}^{17}F(p, \gamma){}^{18}Ne$	U	1.7
18	40 Sc(p, γ) ⁴¹ Ti	D	1.1
19	$^{48}Cr(p, \gamma)^{49}Mn$	D	1.2

- New observations, new techniques and vast amount of data (e.g. Gaia) have significantly reduced astrophysical uncertainties
- Stellar and explosion models now in 3D, identifying new processes

=> Reducing nuclear physics uncertainties is critical for interpreting the wealth of new data.

- New observations, new techniques and vast amount of data (e.g. Gaia) have significantly reduced astrophysical uncertainties
- Stellar and explosion models now in 3D, identifying new processes

=> Reducing nuclear physics uncertainties is critical for interpreting the wealth of new data.

ISAC's capabilities remain world-leading and ideally suited to tackle the new demands and challenges in nuclear astrophysics.

THE UNIVERSITY OF YORK

Pat Walden 1944-2018 Proton Hall → ISAC TUDA

John D'Auria 1939-2017 TISOL → ISAC DRAGON

Successful ISAC programme

Reaction	Motivation	Intensity (s ⁻¹)	Purity (beam:cont.)
²¹ Na(<i>p,γ</i>) ²² Mg	1.275 MeV line emission in ONe novae	5 x 10 ⁹	100%
¹² C(α,γ) ¹⁶ O	Helium burning in red giants	3 x 10 ¹¹ to 1 x 10 ¹²	
^{26g} Al(<i>p</i> ,γ) ²⁷ Si	Nova contribution to galactic ²⁶ Al	3 x 10 ⁹	30,000:1
¹² C(¹² C,γ) ²⁴ Mg	Nuclear cluster models	3 x 10 ¹¹	
⁴⁰ Ca(<i>α,γ</i>) ⁴⁴ Ti	Production of ⁴⁴ Ti in SNII	3 x 10 ¹¹	10,000:1 – 200:1
²³ Mg(<i>p</i> ,γ) ²⁴ Al	1.275 MeV line emission in ONe novae	5 x 10 ⁷	1:20 – 1:1,000
¹⁷ Ο(<i>α,γ</i>) ²¹ Ne	Neutron poison in massive stars	1 x 10 ¹²	
¹⁸ F(<i>p,γ</i>) ¹⁹ Ne	511 keV line emission in ONe novae	2 x 10 ⁶	100:1
³³ S(<i>p,γ</i>) ³⁴ Cl	S isotopic ratios in nova grains	1 x 10 ¹⁰	
¹⁶ Ο(<i>α,γ</i>) ²⁰ Ne	Stellar helium burning	1 x 10 ¹²	
¹⁷ Ο(<i>p</i> ,γ) ¹⁸ F	Explosive hydrogen burning in novae	1 x 10 ¹²	
³ He(<i>α,γ</i>) ⁷ Be	Solar neutrino spectrum	5 x 10 ¹¹	
⁵⁸ Ni(<i>p,γ</i>) ⁵⁹ Cu	High mass tests (p-process, XRB)	6 x 10 ⁹	
^{26m} Al(<i>p,γ</i>) ²⁷ Si	SNII contribution to galactic ²⁶ Al	2 x 10 ⁵	1:10,000
³⁸ K(<i>p</i> ,γ) ³⁹ Ca	Ca/K/Ar production in novae	2 x 10 ⁷	1:1
¹⁹ Ne(<i>p,γ</i>) ²⁰ Na	¹⁹ F abundance in nova ejecta	2 x 10 ⁷	1:1 to 4:1
²² Ne(<i>p,γ</i>) ²³ Na	NeNa cycle; explosive H burning in classical novae	2 x 10 ¹²	
⁷ Be(α,γ) ¹¹ C	v-p process		1:200 to 1:1000