Weekly Update

May 30, 2025

Leo Zhu, Denaisha Kraft

Investigating Preprocessing Issue

Some events had voxels with higher energies than the incident energy

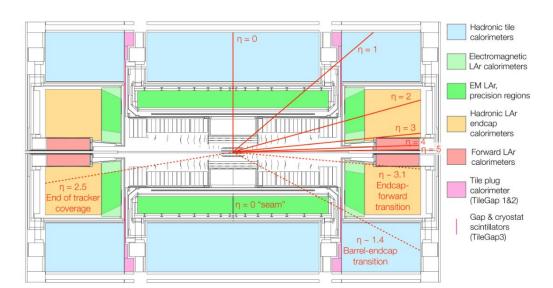
- From eta=0.20 to eta=0.95, each file had between 2 to 9 cases of this
 - eta=0.20 and eta=0.30 had no cases

- Checked which layers this was for:
 - One case in layer 1 with an incident energy of 131072 MeV (eta=0.60)
 - All other cases in layer 0 with an incident energy of 256 MeV

ATLAS layer dictionary

https://link.springer.com/article/10.1140/epjc/s10052-021-09402-3

The number of the layer points to a specific region in ATLAS and a specific type of detector.



#	Layer	#	Layer
0	PreSamplerB	12	TileBar0
1	EMB1	13	TileBar1
2	EMB2	14	TileBar2
3	EMB3	15	TileGap1
4	PreSamplerE	16	TileGap2
5	EME1	17	TileGap3
6	EME2	18	TileExt0
7	EME3	19	TileExt1
В	HEC0	20	TileExt2
9	HEC1	21	FCal0
10	HEC2	22	FCal1
11	HEC3	23	FCal2

Event Displays

Examples for eta=0.60

Issue in layer 0

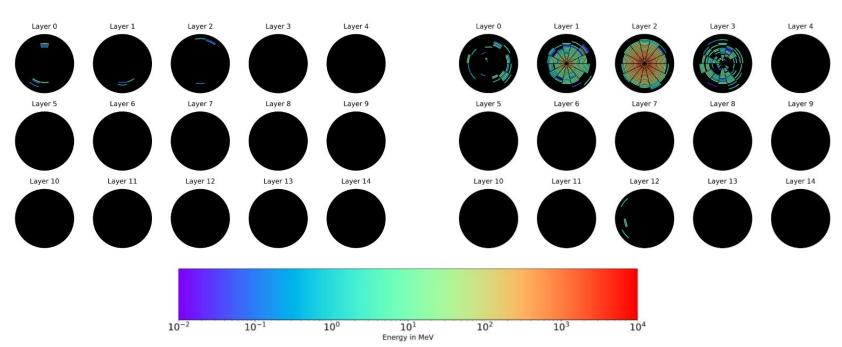
Calorimeter Layer Energy Diagram when E = 0.26 GeV

These events were removed from the dataset

Event 94162, voxel 575, LAYER = 1 Incident energy = 131072.0 Voxel energy = 3568258829516800.00 Voxel / Incident = 27223654400.0000

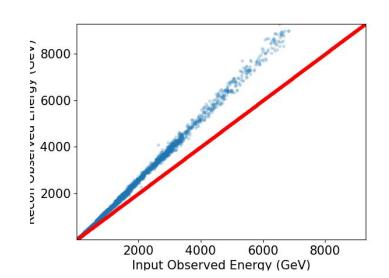
Issue in layer 1

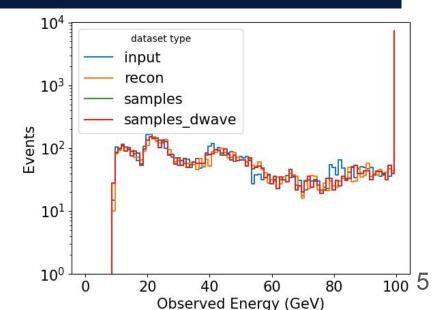
Calorimeter Layer Energy Diagram when E = 131.07 GeV



Smearing

```
noise = torch.empty_like(incident_energies).uniform_(-0.5, 0.5)
perturbed_energies = torch.exp(torch.log(incident_energies) + noise)
scale = perturbed_energies/incident_energies
```

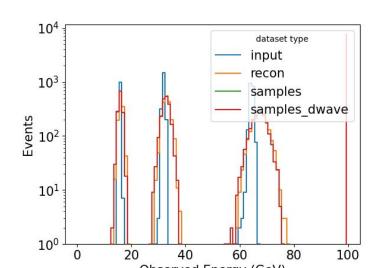


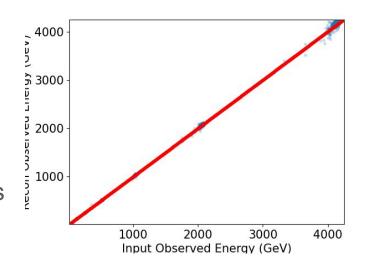


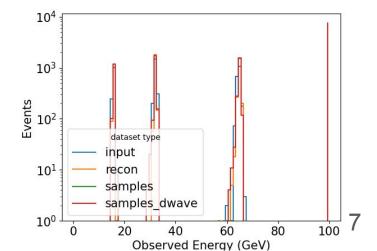
Adapting Ian's Model

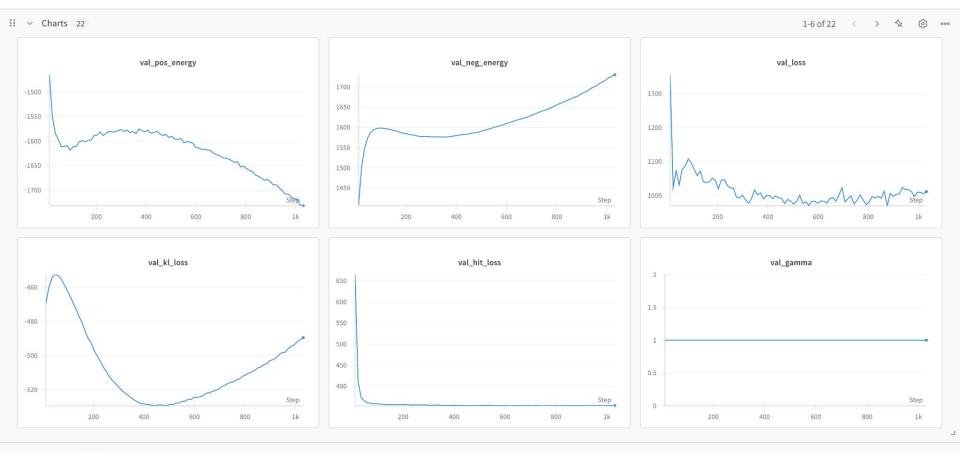
- What's New?
 - New decoder where skip connections send information from slices of the latent space to subdecoders
- Adapting to the Atlas dataset
 - Calo dataset: z = 45, r = 9, phi = 16
 - Atlas dataset: z=7, r = 24, phi = 14
- Updated encoder and decoder convolutions to match to new target dimensions
 - Requires trial and error
 - Slight flaw: cropping required for phi
 - Potentially problematic since z changes for different eta

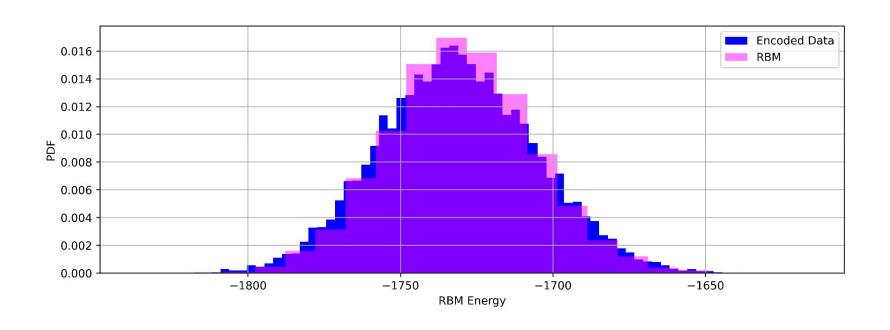
- Much better energy reconstruction
 - Even with discrete energies!
- Old model struggled learning discrete energies







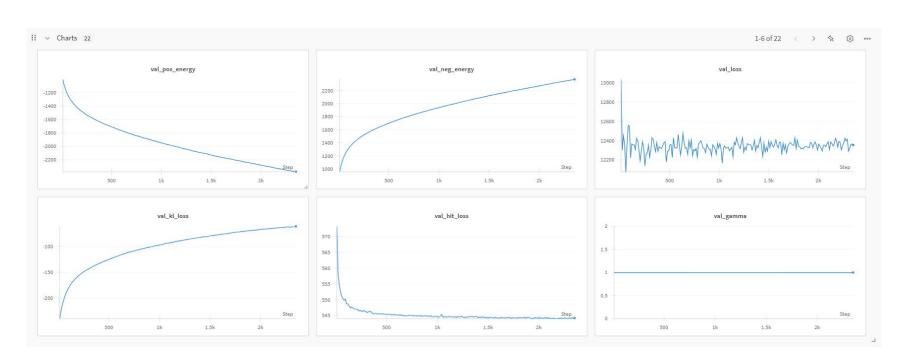






Performance of the Old Model

For eta=0.30



Performance of the Old Model



Comparisons to FastCaloSim

Things done by FastCaloSim:

- Compare the energy deposited in the layer vs the eta value
- Compare eta asymmetries

Our dataset is only positive eta values

 If we had negative eta files could look at asymmetries in voxel energy deposits across positive and negative eta values within a specific layer to compare GEANT4 and the model

Other Comparisons

Things done by FastCaloSim:

- Chi squared test statistic to compare GEANT4 and the model
 - Using both the formula from ROOT for unweighted histograms and the formula from FastCaloChallenge
- KS-statistic (scipy.stats.ks_2samp)
 - Compares underlying distributions
- Wasserstein distance (scipy.stats.wasserstein_distance)
 - Similarity metric between two probability distributions
- Ratios of the means and standard deviations
- Ratio of the standard error of the mean (SEM)

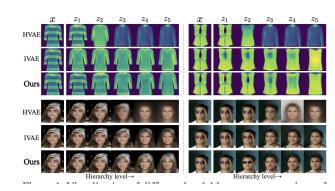
Proposal for Future Models: Reinforcement Learning

Motivation

- Is our VAE really adding new meaning in each hierarchy?
 How do we prevent posterior collapse?
- Reinforcement learning has been wildly successful in generative models (LLMs, Chain of Thought)

Brief RL summary

- Train an agent to make good choices (winning at Go, generating meaningful latent codes)
- Agent is always in a state associated with a reward, and can take actions to enter different states
- Over many iterations, agent learns to take actions that maximize reward



Implementing RL

- Technique from literature:
 - Paper name: Improving Unsupervised Hierarchical Representation with Reinforcement Learning $R(T) = \log p(x|z_{>t}) KL(q(z_t|z_{< t},x)||p(z_t))$
 - Reward function:
 - How good is the decoder considering only the latent variables outputted this layer onward?
 - How **different** is the distribution q compared to the generic posterior p(x)
- Some advantages
 - Very successful in paper mentioned above: possibility of learning richer latent features
 - No change at all to inference time, no increase in parameter size