Weekly Update

August 15, 2025 Leo Zhu and Denaisha Kraft

New Data

File Structure: atlas_july31

- Eta (ie "eta_050")
 - Binning type: (eta_000_default_binning or eta_000_regular_binning)
 - "Complete" datasets (dataset_combined_fine.hdf5 dataset_combined.hdf5 dataset_combined_positive.hdf5): 150,000 events each
 - Jobs (0 -19)
 - Each has its own set of the 3 datasets, 7,500 events each
 - Can build "rebuilt" datasets by combining datasets in job folders, 150,000 events total each

In each dataset

Familiar set of keys (layer_num, incident energies, geometry)

Cylinder Plots

Using dataset_combined and dataset_combined_positive:

Default binning: Regular binning: -22.5 20.0 17.5 15.0 -12.5 Z 10.0 7.5 2.5 600 500 250 -1000-750 -600-500 -250-400-250-200

-22.5 20.0

17.5

15.0

12.5 Z

10.0

5.0

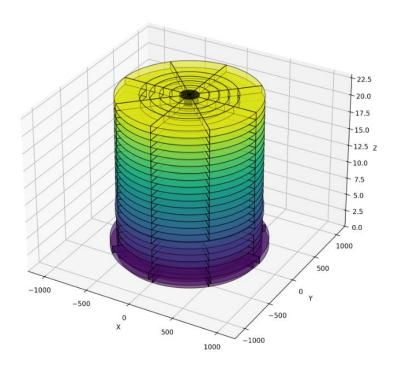
2.5

1000 750

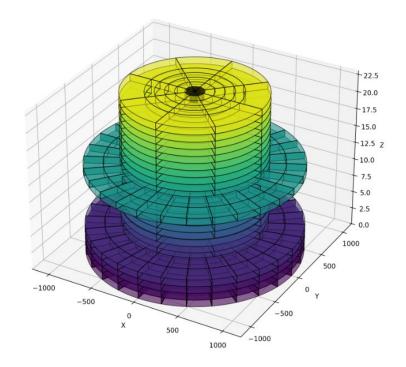
-500

-750

10001000


250

750


Fine Binning Cylinder Plots

Using dataset_combined_fine

Default binning:

Regular binning:

Voxels Per Layer

Default binning (events and voxels):

combined and combined_positive

```
energy_layer_0: shape=(150000, 36),
energy_layer_1: shape=(150000, 164).
energy layer 10: shape=(150000, 36),
energy layer 11: shape=(150000, 36),
energy_layer_12: shape=(150000, 36),
energy layer 13: shape=(150000, 36),
energy layer 14: shape=(150000, 36),
energy layer 15: shape=(150000, 36),
energy_layer_16: shape=(150000, 36),
energy layer 17: shape=(150000, 36),
energy layer 18: shape=(150000, 36),
energy layer 19: shape=(150000, 36),
energy layer 2: shape=(150000, 110),
energy_layer_20: shape=(150000, 36),
energy layer 21: shape=(150000, 36),
energy_layer_22: shape=(150000, 36),
energy_layer_23: shape=(150000, 36),
energy_layer_3: shape=(150000, 36),
energy layer 4: shape=(150000, 36),
energy_layer_5: shape=(150000, 124),
energy_layer_6: shape=(150000, 124),
energy layer 7: shape=(150000, 60),
energy layer 8: shape=(150000, 36),
energy layer 9: shape=(150000, 36),
```

combined_fine

```
energy_layer_0: shape=(150000, 144),
energy layer 1: shape=(150000, 656),
energy layer 10: shape=(150000, 144),
energy layer 11: shape=(150000, 144),
energy layer 12: shape=(150000, 144),
energy layer 13: shape=(150000, 144),
energy layer 14: shape=(150000, 144),
energy layer 15: shape=(150000, 144),
energy layer 16: shape=(150000, 144),
energy_layer_17: shape=(150000, 144),
energy layer 18: shape=(150000, 144),
energy_layer_19: shape=(150000, 144),
energy layer 2: shape=(150000, 440),
energy layer 20: shape=(150000, 144),
energy_layer_21: shape=(150000, 144),
energy_layer_22: shape=(150000, 144),
energy layer 23: shape=(150000, 144),
energy_layer_3: shape=(150000, 144),
energy layer 4: shape=(150000, 144),
energy_layer_5: shape=(150000, 496),
energy layer 6: shape=(150000, 496),
energy layer 7: shape=(150000, 240),
energy layer 8: shape=(150000, 144),
energy layer 9: shape=(150000, 144),
```

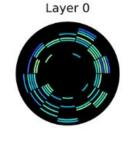
Voxels Per Layer

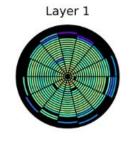
Regular binning (events and voxels):

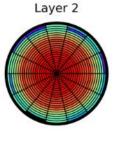
combined and combined_positive

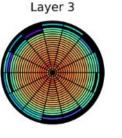
```
energy layer 0: shape=(150000, 336),
energy_layer_1: shape=(150000, 336),
energy layer_10: shape=(150000, 36),
energy_layer_11: shape=(150000, 36),
energy layer 12: shape=(150000, 336)
energy layer 13: shape=(150000, 36),
energy layer 14: shape=(150000, 36),
energy layer 15: shape=(150000, 36),
energy layer 16: shape=(150000, 36),
energy layer 17: shape=(150000, 36),
energy layer 18: shape=(150000, 36),
energy layer 19: shape=(150000, 36),
energy_layer_2: shape=(150000, 336),
energy layer 20: shape=(150000, 36),
energy layer 21: shape=(150000, 36),
energy layer 22: shape=(150000, 36),
energy layer 23: shape=(150000, 36),
energy layer 3: shape=(150000, 336),
energy layer 4: shape=(150000, 36),
energy layer 5: shape=(150000, 124),
energy layer 6: shape=(150000, 124),
energy layer 7: shape=(150000, 60),
energy layer 8: shape=(150000, 36),
energy layer 9: shape=(150000, 36),
```

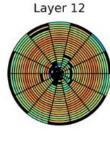
combined_fine

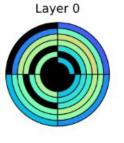

```
energy layer 0: shape=(150000, 1344),
energy_layer_1: shape=(150000, 1344),
energy layer 10: shape=(150000, 144),
energy layer 11: shape=(150000, 144),
energy layer 12: shape=(150000, 1344)
energy layer 13: shape=(150000, 144),
energy layer 14: shape=(150000, 144),
energy layer 15: shape=(150000, 144),
energy layer 16: shape=(150000, 144),
energy layer 17: shape=(150000, 144),
energy_layer_18: shape=(150000, 144),
energy layer 19: shape=(150000, 144),
energy layer 2: shape=(150000, 1344),
energy layer 20: shape=(150000, 144),
energy layer 21: shape=(150000, 144),
energy layer 22: shape=(150000, 144),
energy layer 23: shape=(150000, 144),
energy layer 3: shape=(150000, 1344),
energy layer 4: shape=(150000, 144),
energy layer 5: shape=(150000, 496),
energy layer 6: shape=(150000, 496),
energy layer 7: shape=(150000, 240),
energy layer 8: shape=(150000, 144),
energy_layer_9: shape=(150000, 144),
```

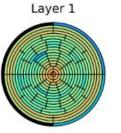

Cylinder Slices

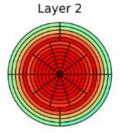

Example for eta_000:

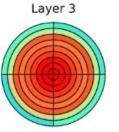

Calorimeter Layer Energy Diagram when E = 4191.80 GeV


Regular binning:

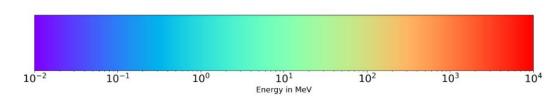


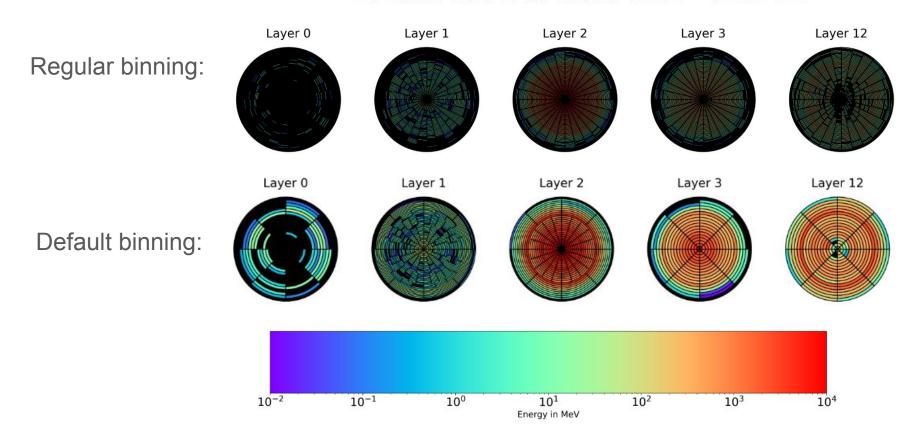






Default binning:





Dataset_combined and dataset_combined_positive have the same binning

Fine Cylinder Slices

Calorimeter Layer Energy Diagram when E = 4191.80 GeV

File Binning

Using regular_binning for active layers (layers with events that have non-zero voxel energy deposits)

- This is the same for all eta

```
Layer 0: radial bins = 24, angular bins = 14
Layer 1: radial bins = 24, angular bins = 14
Layer 2: radial bins = 24, angular bins = 14
Layer 3: radial bins = 24, angular bins = 14
Layer 12: radial bins = 24, angular bins = 14
```

Note previous dataset that was being trained on had 24 radial bins and 14 angular bins for all layers

For all layers (regular binning):

 This is for dataset_combined_positive and dataset_combined (eta_000)

```
Layer 0: radial bins = 24, angular bins = 14
Layer 1: radial bins = 24, angular bins = 14
Layer 2: radial bins = 24, angular bins = 14
Layer 3: radial bins = 24, angular bins = 14
Layer 4: radial bins = 9, angular bins = 4
Layer 5: radial bins = 31, angular bins = 4
Layer 6: radial bins = 31, angular bins = 4
Layer 7: radial bins = 15, angular bins = 4
Layer 8: radial bins = 9, angular bins = 4
Layer 9: radial bins = 9, angular bins = 4
Layer 10: radial bins = 9, angular bins = 4
Layer 11: radial bins = 9, angular bins = 4
Layer 12: radial bins = 24, angular bins = 14
Layer 13: radial bins = 9, angular bins = 4
Layer 14: radial bins = 9, angular bins = 4
Laver 15: radial bins = 9, angular bins = 4
Layer 16: radial bins = 9, angular bins = 4
Laver 17: radial bins = 9, angular bins = 4
Layer 18: radial bins = 9, angular bins = 4
Layer 19: radial bins = 9, angular bins = 4
Layer 20: radial bins = 9, angular bins = 4
Laver 21: radial bins = 9, angular bins = 4
Layer 22: radial bins = 9, angular bins = 4
Layer 23: radial bins = 9, angular bins = 4
```

Fine Binning

Using regular_binning for active layers

- This is the same for all eta

```
Layer 0: radial bins = 48, angular bins = 28
Layer 1: radial bins = 48, angular bins = 28
Layer 2: radial bins = 48, angular bins = 28
Layer 3: radial bins = 48, angular bins = 28
Layer 12: radial bins = 48, angular bins = 28
```

Compared to dataset_combined and dataset_combined_positive, the dataset_fine files have 2x as many radial bins and 2x as many angular bins for each active layer

For all layers (regular binning):

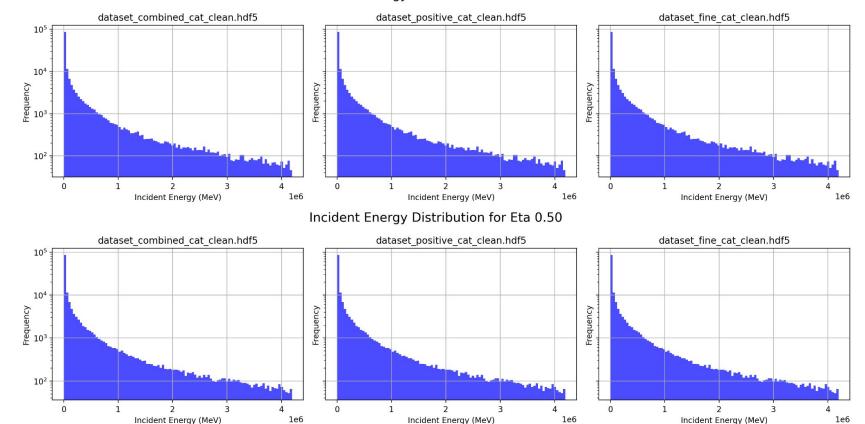
```
Layer 0: radial bins = 48, angular bins = 28
      1: radial bins = 48, angular bins = 28
      2: radial bins = 48, angular bins = 28
      3: radial bins = 48, angular bins = 28
Layer 4: radial bins = 18, angular bins = 8
Layer 5: radial bins = 31, angular bins = 16
Layer 6: radial bins = 31, angular bins = 16
Layer 7: radial bins = 30, angular bins = 8
Layer 8: radial bins = 18, angular bins = 8
Layer 9: radial bins = 18, angular bins = 8
Layer 10: radial bins = 18, angular bins = 8
Layer 11: radial bins = 18, angular bins = 8
Layer 12: radial bins = 48, angular bins = 28
Layer 13: radial bins = 18, angular bins = 8
Layer 14: radial bins = 18, angular bins = 8
Layer 15: radial bins = 18, angular bins = 8
Layer 16: radial bins = 18, angular bins = 8
Layer 17: radial bins = 18, angular bins = 8
Layer 18: radial bins = 18, angular bins = 8
Layer 19: radial bins = 18, angular bins = 8
Layer 20: radial bins = 18, angular bins = 8
Layer 21: radial bins = 18, angular bins = 8
Layer 22: radial bins = 18, angular bins = 8
Layer 23: radial bins = 18, angular bins = 8
```

Rebuilt File Binning

The rebuilt files have more active layers

In these files, certain active layers have different r and phi binning

- Example (r, phi) binning for eta_130 combined and combined_positive:

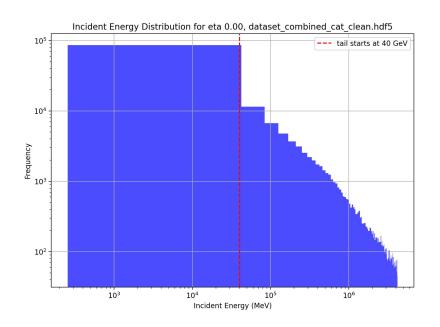

```
eta 130
         Layer 0: Match | Binning = (24, 14)
eta 130
         Layer
                1: Match | Binning = (24, 14)
eta 130
         Layer
                2: Match | Binning = (24, 14)
eta 130
                3: Match | Binning = (24, 14)
        Layer
                4: Extra in split (inactive in main) | Binning = {(9, 4)}
eta 130 | Layer
eta 130
                5: Extra in split (inactive in main)
                                                       Binning = \{(31, 4)\}
eta 130
                6: Extra in split (inactive in main)
                                                       Binning = \{(31, 4)\}
                                                       Binning = \{(15, 4)\}
eta 130
                7: Extra in split (inactive in main)
                8: Extra in split (inactive in main)
                                                       Binning = \{(9, 4)\}
eta 130
                9: Extra in split (inactive in main)
                                                       Binning = \{(9, 4)\}
eta 130
eta 130
         Layer 12: Match | Binning = (24, 14)
        Layer 15: Extra in split (inactive in main)
                                                       Binning = \{(9, 4)\}
eta 130
eta 130
         Layer 17: Extra in split (inactive in main)
                                                       Binning = \{(9, 4)\}
         Layer 18: Extra in split (inactive in main) |
                                                       Binning = \{(9, 4)\}
eta 130
         Layer 19: Extra in split (inactive in main)
eta 130
                                                       Binning = \{(9, 4)\}
         Layer 20: Extra in split (inactive in main)
                                                       Binning = \{(9, 4)\}
eta 130
```

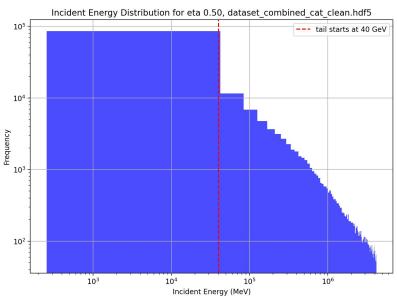
For the active layers in common, the (r, phi) binning is the same

Note combined_fine has 2x these values for r and phi binning

Comparing the 3 complete datasets (Incident Energies)

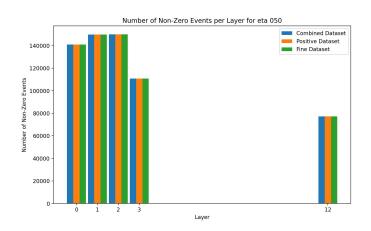
Incident Energy Distribution for Eta 0.00

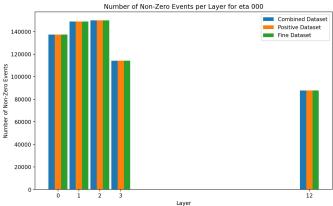

Confirming incident energies are identical across the 3 datasets

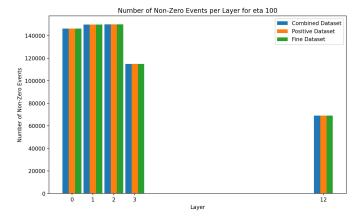

```
# Check if incident energies are identical for each eta in original datasets
base_dir = "/fast_scratch_1/caloqvae/data/atlas_july31_cat"
for eta in range(0, 135, 5):
   file names = ["dataset combined cat.hdf5", "dataset positive cat.hdf5", "dataset fine cat.hdf5"]
   incident energies = []
   showers_list = []
   for file name in file names:
       with h5pv.File(f"{base dir}/eta {eta:03d}/eta {eta:03d} regular binning/{file name}", 'r') as f:
            incident energy = torch.from numpy(f['incident energy'][:])
            incident_energies.append(incident_energy)
            showers = torch.from_numpy(f['showers'][:]).sum(dim=1)
            showers_list.append(showers)
   # Check if all incident energies are the same
   if all(torch.equal(incident energies[0], ie) for ie in incident energies):
       print(f"Incident energies are identical for eta {eta}")
    else:
       print(f"Incident energies differ for eta {eta}")
```

```
Incident energies are identical for eta 0
Incident energies are identical for eta 5
Incident energies are identical for eta 10
Incident energies are identical for eta 15
Incident energies are identical for eta 20
Incident energies are identical for eta 25
Incident energies are identical for eta 30
Incident energies are identical for eta 35
Incident energies are identical for eta 40
Incident energies are identical for eta 45
Incident energies are identical for eta 50
Incident energies are identical for eta 55
Incident energies are identical for eta 60
Incident energies are identical for eta 65
Incident energies are identical for eta 70
Incident energies are identical for eta 75
Incident energies are identical for eta 80
Incident energies are identical for eta 85
Incident energies are identical for eta 90
Incident energies are identical for eta 95
Incident energies are identical for eta 100
Incident energies are identical for eta 105
Incident energies are identical for eta 110
Incident energies are identical for eta 115
Incident energies are identical for eta 120
Incident energies are identical for eta 125
Incident energies are identical for eta 130
```

Incidence Energy Distribution

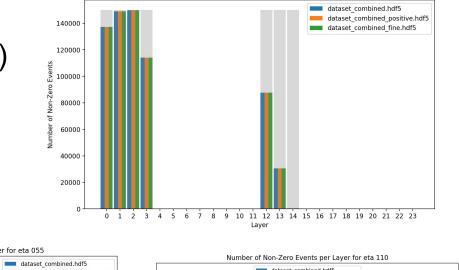

- Uniform on log-log axes in the beginning (power law distribution)
- Tail starting at 40 GeV

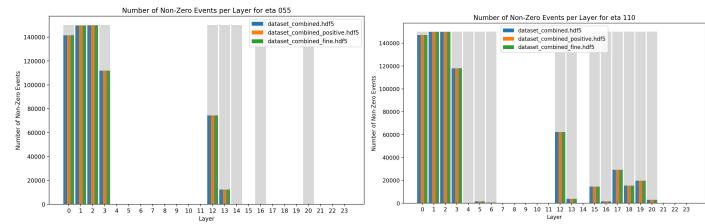




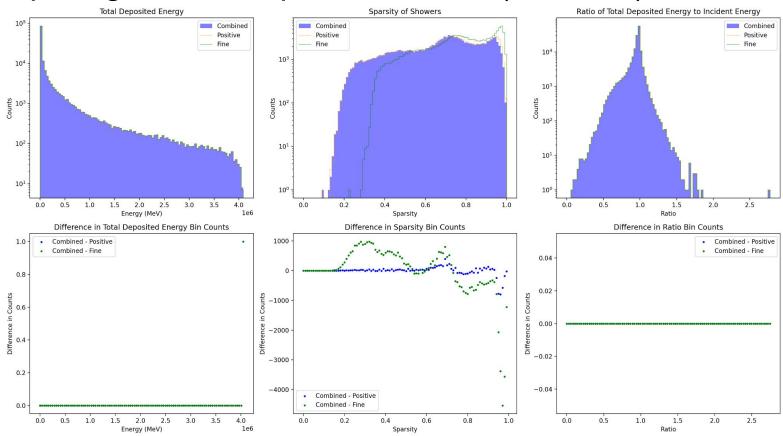
Comparing the 3 complete datasets (activated layers)

- Across all eta, same 5 layers [0, 1, 2, 3,
 12] are activated
- Activations are identical across the 3 datasets

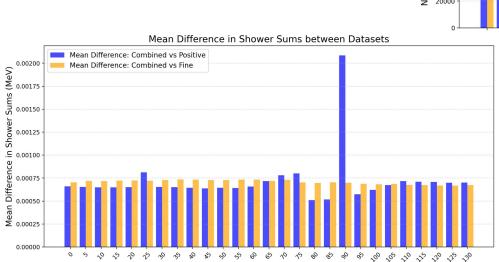




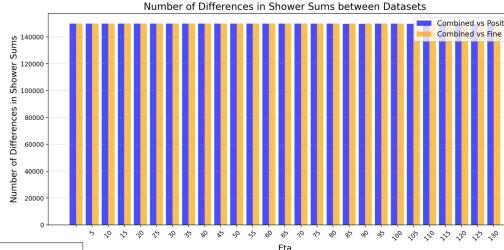
Rebuilt Datasets (Activated Layers)


- More activated layers than the complete datasets
- Number of activated layers increases with eta
- Identical for the3 dataset types

Number of Non-Zero Events per Layer for eta 000

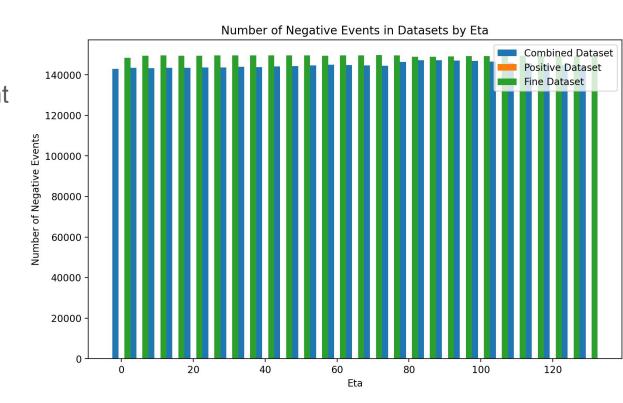


Comparing the 3 complete datasets (showers)

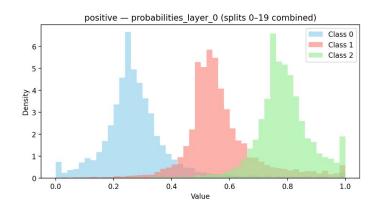


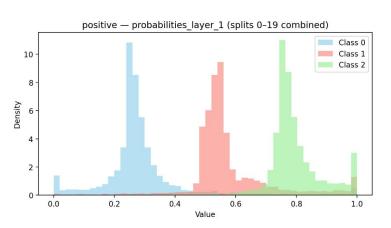
Comparing Energy Sums

Distribution is the same,
 but sums are subtly
 different

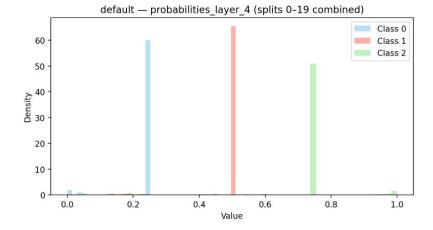


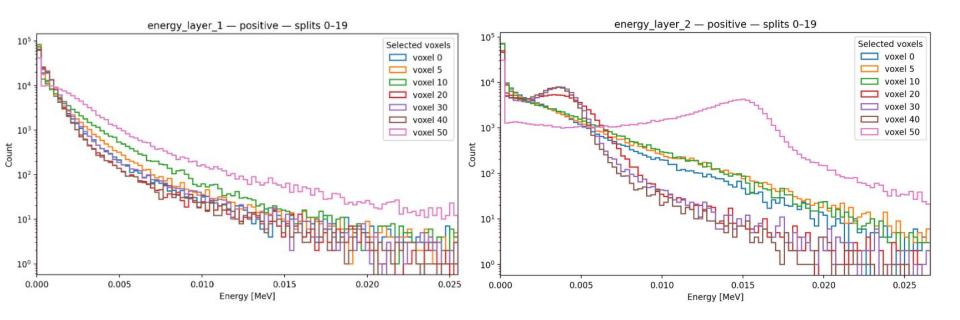
Eta



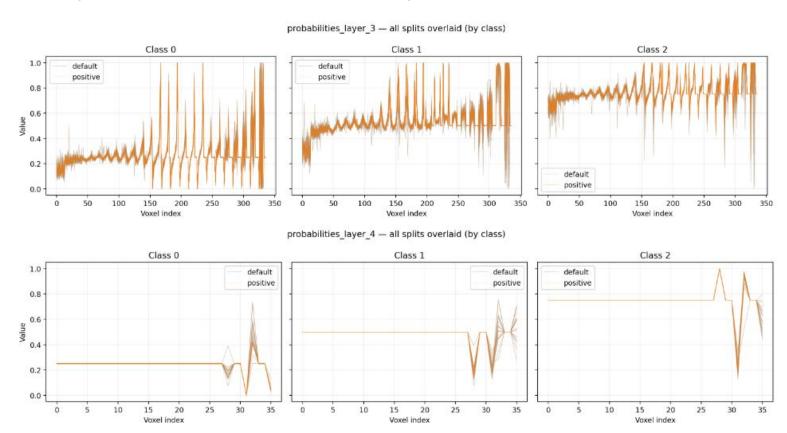

combined vs combined_positive

- Key difference is negative voxel counts
- Negative voxels present in nearly all events in the 2 non-positive datasets
- Masking process is unknown

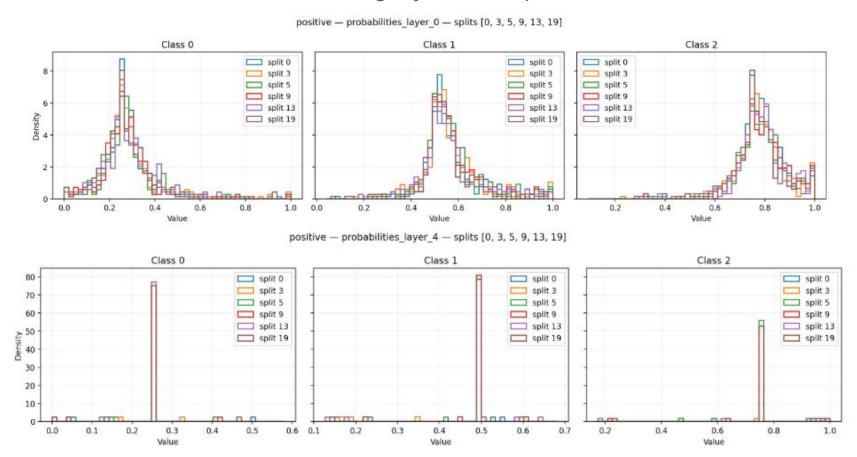

Layer Probabilities


- Additional information in the rebuilt files with layer probabilities
- Not in the fine binning files
- Non active layers are mainly 0.25, 0.50, and 0.75

```
probabilities_layer_0: shape=(336, 3),
probabilities_layer_1: shape=(336, 3),
probabilities layer 10: shape=(36, 3),
probabilities_layer_11: shape=(36, 3),
probabilities layer_12: shape=(336, 3)
probabilities layer 13: shape=(36, 3),
probabilities layer 14: shape=(36, 3),
probabilities layer 15: shape=(36, 3),
probabilities layer 16: shape=(36, 3),
probabilities layer_17: shape=(36, 3),
probabilities_layer_18: shape=(36, 3),
probabilities layer 19: shape=(36, 3),
probabilities layer 2: shape=(336, 3),
probabilities layer 20: shape=(36, 3),
probabilities_layer_21: shape=(36, 3),
probabilities layer 22: shape=(36, 3),
probabilities layer 23: shape=(36, 3),
probabilities layer 3: shape=(336, 3),
probabilities layer 4: shape=(36, 3),
probabilities_layer_5: shape=(124, 3),
probabilities_layer_6: shape=(124, 3),
probabilities layer 7: shape=(60, 3),
probabilities_layer_8: shape=(36, 3),
probabilities layer 9: shape=(36, 3),
```

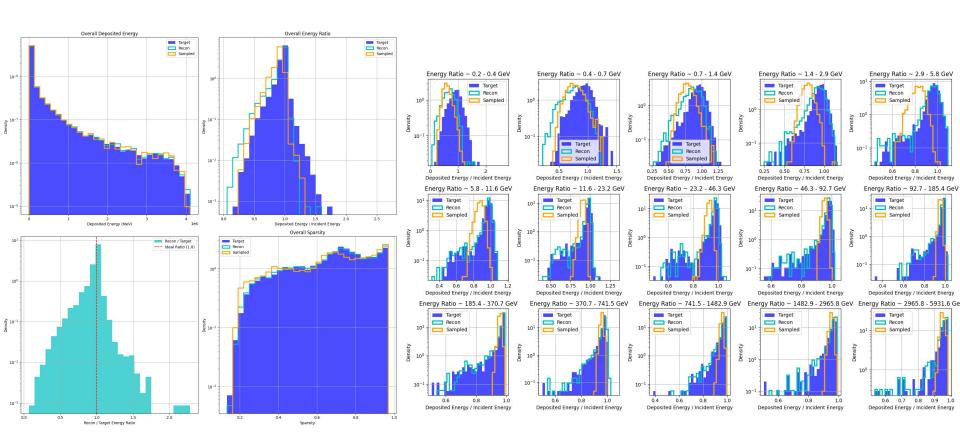


Specific Layers

 Looking at specific voxels and the probabilities

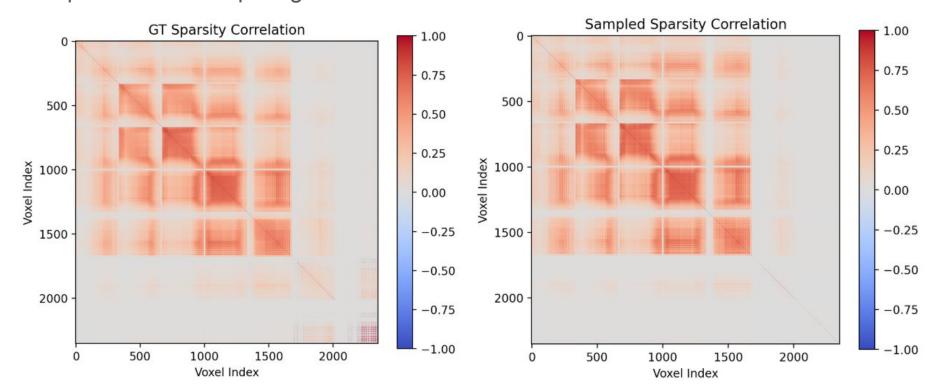

Probabilities and Voxel Indices

Inactive layers have probabilities of mainly 0.25, 0.50, and 0.75

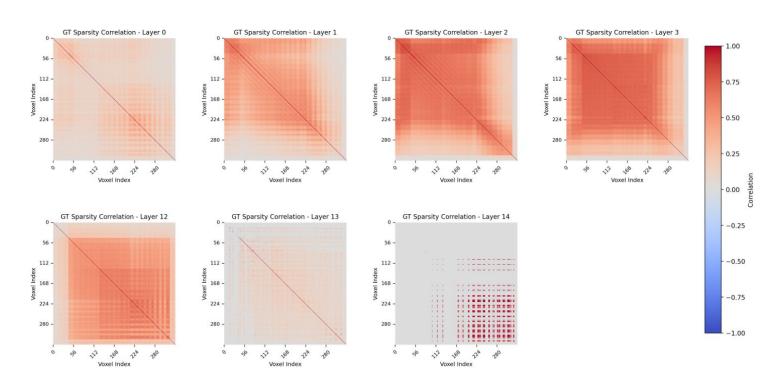
Probabilities


Rebuilt files 0-19 have similar but slightly different probabilities for voxels

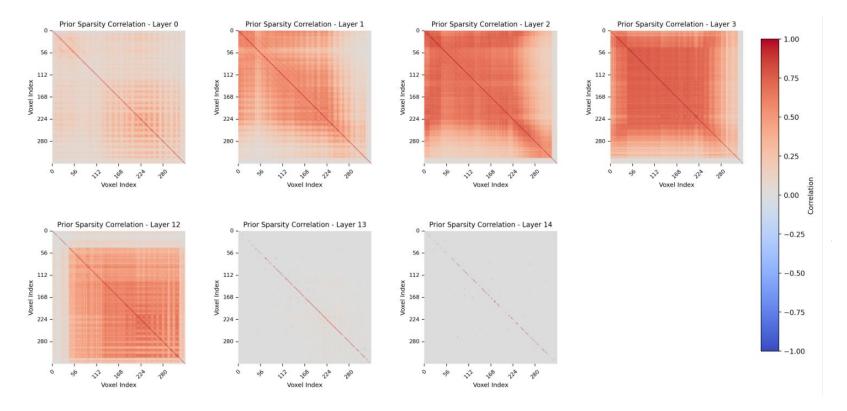
Processing/Work Done on New Dataset


- Filtered out events where voxel energy > incident energy
- Adapted decoder and encoder to handle z=5
- Training successfully on new dataset

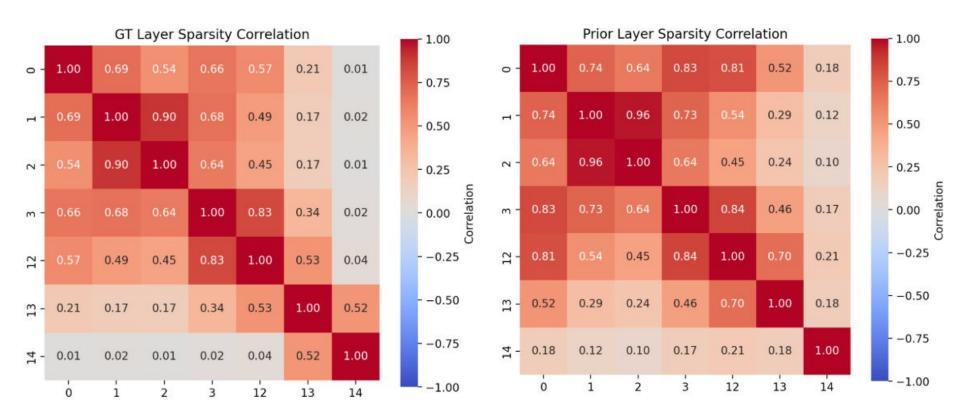
Model Performance on New Dataset


Sparsity Correlation/Frobenius

Now implemented for sparsity and voxel energy Computed voxel-wise Epoch 239 - Computing one Frobenius metric

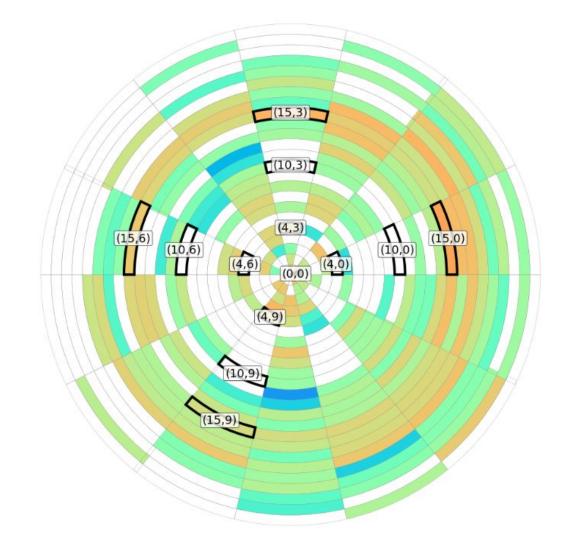

Sparsity Correlation (Layer Evaluation)

Also split up by layer and compute a Frobenius metric for each layer

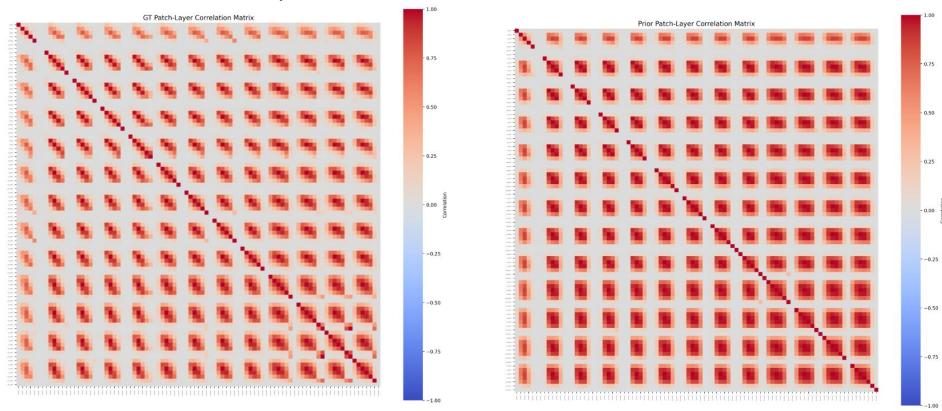

Sparsity (Sampled)

For prior samples:

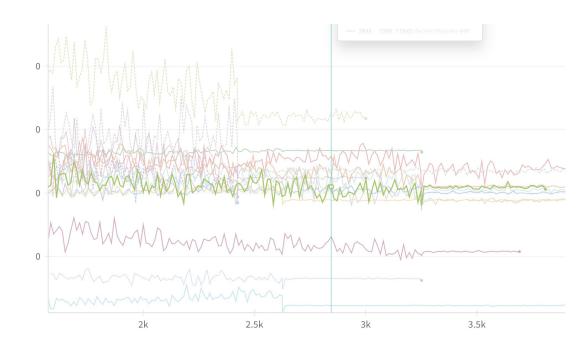
Layer Sparsity


Taking average sparsity per layer and obtaining a layer-wise correlation matrix to compute a Frobenius metric (this is also done for voxel energy)

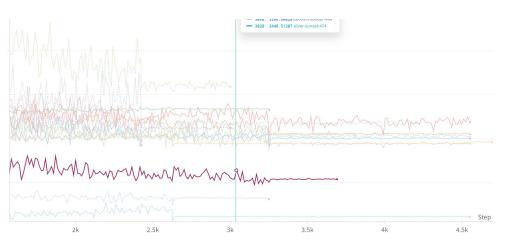
Patches

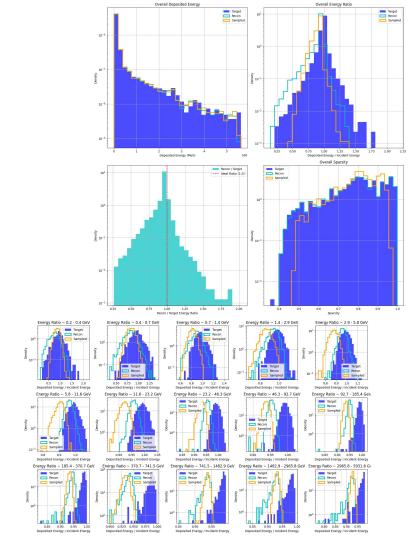

Performing correlations between patches and layers

Selected patches shown here:


Patches (Correlations)

Correlations between patches and layers Frobenius metric computed


Updates on Decoder: Two Heads are Better than One


- Removed heads in all subdecoders except for last
- No regularization
 performance on par with
 old models with
 regularization

GeoDecoder Updates

- Added second head to first subdecoder
- Regularized performance best so far
- TODO: KPD and FPD

