

UNIVERSITY OF MANITOBA

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Spectrometer and Detector Simulations for the MOLLER Experiment

Sakib Rahman

Introduction

- Parity-violating asymmetry (A_{PV}) in electron-electron scattering.
- Measurement of weak charge of electron up to 2.4% accuracy.
- Highest precision on weak mixing angle measurement till date.
 - Spectrometer and detector systems need to be optimized with regards to sensitivity to coil offsets and background contributions.

Jefferson Lab

Cameron Clarke and Tyler Kutz

Detector Studies

Yuxiang Zhao

Extracting the Physical Asymmetries

/ Asymmetry

 $\mathsf{Dilution} = \frac{N_i}{N_{total}}$

A_{meas} = $\sum f_i A_i$ i = ee, ep-el, ep-in, eAl-el, eAl-qel, eAl-in, pim etc. in each quartz tile of a ring.

Minimize
$$\chi^2 = \sum \frac{(A_{meas}^j - \sum f_i^j A_i^j)^2}{\sigma_{A_{meas}}^2}$$
 to extract the physical asymmetries and

their uncertainties from different sources in all the tiles.

Combine the results from the tiles for each individual ring.

Ring No.	σ _{Ameas} A _{meas} (%)	A _{meas} (ppb)	$rac{f_{ee}A_{ee}}{A_{meas}}$ (%)	$\frac{f_{ep-el}A_{ep-el}}{A_{meas}}$ (%)	$\frac{f_{ep-in}A_{ep-in}}{A_{meas}}_{(\%)}$	$\frac{f_{eAl-el}A_{eAL-el}}{A_{meas}}$ (%)	$\frac{f_{eAl-in}A_{eAL-in}}{A_{meas}}$ (%)	∫pimApim A _{meas} (%)
1	3.05%	-78.69	0	79.9	28.6	-9.66	1.12	0
2	1.09%	-103.1	0	65.3	44.1	-11.3	1.83	0.05
3	1.68%	-91.15	1.12	50.3	54.3	-8.25	1.34	1.13
4	3.06%	-44.73	33.5	37.8	28.3	-7.33	0.63	7.04
5	1.61%	-34.26	88.2	6.61	3.56	-1.47	0.09	2.98
6	7.24%	-13.28	57.5	25.3	8.40	-7.47	0.30	15.9

Yuxiang Zhao

Systematic Uncertainties in Møller Ring

•
$$A_{ee} = \frac{1}{f_{ee}} A_{meas} - \sum_{i \neq ee} \frac{f_i}{f_{ee}} A_i.$$

 Systematic uncertainty from each source assuming negligible uncertainty on dilution:

$$\frac{f_i}{f_{ee}}\sigma_{A_i}$$

Processes	Uncertainties normalized to 33 ppb (%)			
ee (stat)	1.88			
ep-el	0.37(0.036)	Can be		
ep-in	0.16	by further inputs		
eAl-el	0.36(0.1)			
eAl-qel	0	GWEAK		
eAl-in	0.09			
pim	0.33			

Taking the Lightguides into Account

- The photoelectrons recorded at a single detector has contributions from incidences on the quartz and the light guide.
- The quartz and light guide have different response factors to incident rates.
- Use an educated guess for the response factors to determine what the expected contributions are from incidences on either segments.

Photoelectrons generated from different sources in Møller Ring

Initial Parametrization In GDML

Quickly change geometry with the modification of a few parameters.

- Rad Pos: 18 parameters
- > Z Pos: 18 parameters
- Rad Extent : 18 parameters
- Z Extent : 18 parameters
- $\succ \Phi$ Extent : 18 parameters
- Quartz Cut Angle: 18 parameters
- Reflector Angle: 18 parameters
- Angle of Lightguide wrt Quartz : 18 parameters
- Reflector Lengths: 18 parameters
- LG Lengths: 18 parameters

Alternate Parametrization With CADMesh

- Go directly from CAD to GEANT 4 instead of having intermediate GDML.
- Reduces the number of parameters on the GEANT 4 side.

Spectrometer Studies

Sensitivity Studies

$$Q^{2} = 4EE'\sin^{2}\frac{\theta_{lab}}{2}$$

$$\delta Q^{2} = \left(\frac{\partial Q^{2}}{\partial E}\right)^{2} (\delta E)^{2} + \left(\frac{\partial Q^{2}}{\partial E'}\right)^{2} (\delta E')^{2} + \left(\frac{\partial Q^{2}}{\partial \theta_{lab}}\right)^{2} (\delta \theta_{lab})^{2}$$

$$\frac{\partial Q^{2}}{\partial E} = 4E'\sin^{2}\frac{\theta_{lab}}{2} \sim 0.001 \text{ GeV}$$

$$\frac{\partial Q^{2}}{\partial E'} = 4EE'\sin^{2}\frac{\theta_{lab}}{2} \sim 0.001 \text{ GeV}$$

$$\frac{\partial Q^{2}}{\partial \theta_{lab}} = 4EE'\sin\frac{\theta_{lab}}{2}\cos\frac{\theta_{lab}}{2} \sim 1.33 \text{ GeV}^{2}/\text{rad}$$

$$\frac{\delta Q^{2}}{1.33\text{ GeV}^{2}/\text{rad}} = \delta \theta_{lab} = \frac{(0.005)(0.0058\text{ GeV}^{2})}{1.33\text{ GeV}^{2}/\text{rad}} = 2 \times 10^{-5}\text{ rad}$$
Then $\delta \theta_{lab} \left(\frac{\partial \theta_{lab}}{\partial r}\right)^{-1} = \delta r$, the deviation in r allowed.
Repeat calculation for different types of offsets.
Do similar calculations with allowed $\delta R=10\%^{*}R$, $\delta A=0.60$ ppb and $\delta \theta_{com} = 1$ deg.

Hybrid Spectrometer Single Coil Sensitivity to Radial Offset

Hybrid Spectrometer

Single Coil Sensitivity to Radial Offset

Upstream Spectrometer

Single Coil Sensitivity to Radial Offset

Ongoing and Future Work

- Spectrometer System
 - Beam steering studies.
 - Sensitivity studies with multiple coil offset.
 - Hybrid Segmentation studies.

- Integrating Detector System
 - Implement a flexible and easily transferable geometry in simulation.
 - Background study with complete detector geometry incorporating errors in both dilution and asymmetry in our analysis.

Acknowledgements

- Cameron Clarke and Tyler Kutz CAD model.
- Yuxiang Zhao Asymmetry calculations.
- Dr. Juliette Mammei and Iris Halilovic TOSCA field maps for spectrometer simulations.
- This work was supported by NSERC, US Department of Energy and JSA.
- Thanks to CINP for the travel funding.

UNIVERSITY OF MANITOBA

Canadian Institute of Nuclear Physics

Institut canadien de physique nucléaire

Hybrid Spectrometer Single Coil Sensitivity to All Offsets

Position offsets (r, z) range from -0.5 cm to 0.5 cm and angular offsets (θ, roll, pitch, yaw) range from -0.05 deg to 0.05 deg.

	Rate (GHz)		Asymmetry (ppb)		θ _{lab} (rad)		$\theta_{\rm com}$ (deg)	
	Slope	Sensitivity	Slope	Sensitivity	Slope	Sensitivity	Slope	Sensitivity
z (cm)	2.89E-03	573.68	-1.12E-02	-53.35	2.22E-06	9.02	4.70E-03	212.87
r (cm)	-6.63E+00	-0.25	3.50E-01	1.71	-9.08E-06	-2.20	3.27E-01	3.06
θ (deg)	-1.79E+00	-0.93	3.92E-03	153.19	2.71E-05	0.74	1.39E-01	7.21
roll (deg)	1.48E+00	1.12	-2.56E-02	-23.43	-7.22E-05	-0.28	-4.20E-01	-2.38
yaw (deg)	-2.81E+00	-0.59	2.11E-01	2.84	2.36E-05	0.85	4.13E-01	2.42
pitch (deg)	1.27E+01	0.13	-1.86E-01	-3.23	-1.18E-04	-0.17	-8.19E-01	-1.22

Juliette Mammei

17

Measurement of $sin^2\Theta_W$

 $\Delta \alpha_{had}^{(5)} = 0.02758 \pm 0.00035$ $m_t = 172.7 \pm 2.9 \ GeV$

Erler, Kurylov, Ramsey-Musolf

Juliette Mammei

