nEDM 00000 The UCN facility at TRIUMF 000000

Introduction to the Ultracold neutron facility at TRIUMF

Beatrice Franke

WNPPC 2017, Banff

February 18, 2017

February 18, 2017

1 / 20 Beatrice Franke

nEDM 00000 The UCN facility at TRIUMF

- Introduction to ultracold neutrons (UCN) and how to produce them
- The neutron electric dipole moment (nEDM): definition, motivation, history, and measurement method
- The UCN/nEDM facility at TRIUMF

The UCN facility at TRIUMF 000000

Ultracold neutrons

• $E_{\text{UCN}} \leq 300 \,\text{neV} \stackrel{\circ}{=} 3.5 \,\text{mK} \,("ultracold")$

The UCN facility at TRIUMF 000000

- $E_{\rm UCN} \leq 300 \, {\rm neV} \, \hat{=} \, 3.5 \, {\rm mK} \, ("ultracold")$
- Strong interaction results in pseudopotential $\hat{=}$ optical potential $V_{\rm Fermi}$
- UCN undergo total reflection under all angles of incidence if $E_{\rm UCN} \leqslant V_{\rm Fermi,\,material}$ \Rightarrow UCN are storable, like a gas

- $E_{\rm UCN} \leqslant 300 \, {\rm neV} \, \hat{=} \, 3.5 \, {\rm mK} \, ("ultracold")$
- Strong interaction results in pseudopotential $\hat{=}$ optical potential $V_{\rm Fermi}$
- UCN undergo total reflection under all angles of incidence if $E_{\rm UCN} \leq V_{\rm Fermi,\,material}$ \Rightarrow UCN are storable, like a gas
- Gravitational effects: $E_{\rm UCN}(1\,{\rm m}) \approx 100\,{\rm neV}$

- $E_{\rm UCN} \leqslant 300 \, {\rm neV} \, \hat{=} \, 3.5 \, {\rm mK} \, ("ultracold")$
- Strong interaction results in pseudopotential $\hat{=}$ optical potential $V_{\rm Fermi}$
- UCN undergo total reflection under all angles of incidence if $E_{\rm UCN} \leq V_{\rm Fermi,\,material}$ \Rightarrow UCN are storable, like a gas
- Gravitational effects: $E_{\rm UCN}(1\,{\rm m}) \approx 100\,{\rm neV}$
- Magnetic fields depict a spin-dependent potential: $E_{\rm UCN}(1\,{\rm T}) \approx 60\,{\rm neV}$

- $E_{\rm UCN} \leq 300 \, {\rm neV} \, \hat{=} \, 3.5 \, {\rm mK} \, ("ultracold")$
- Strong interaction results in pseudopotential $\hat{=}$ optical potential $V_{\rm Fermi}$
- UCN undergo total reflection under all angles of incidence if E_{UCN} ≤ V_{Fermi, material} ⇒ UCN are storable, like a gas
- Gravitational effects: $E_{\rm UCN}(1\,{\rm m}) \approx 100\,{\rm neV}$
- Magnetic fields depict a spin-dependent potential: $E_{\rm UCN}(1\,{\rm T}) \approx 60\,{\rm neV}$
- Weak interaction: $\tau_n\approx900\,\mathrm{s}$

UCN ○●○ nEDM 00000 The UCN facility at TRIUMF

How to produce UCN: the TRIUMF source as example

Free n via spallation

 $\begin{array}{l} \text{Moderation} \\ E_{\text{kin}} \propto T_{\text{mod}} \geqslant 10 \, \text{K} \end{array}$

Conversion in superfluid He: $E_{\rm kin} \rightarrow {\rm phonon/roton}$ excitation

UCN ○○● The UCN facility at TRIUMF 000000

What to do with UCN

- Search for the neutron electric dipole moment
- Measure the neutron lifetime
- Investigate beta decay correlations
- Sensitivity to energies of down to peV allows to search for exotic interactions, fifth forces, axions, dark matter, quantized states in gravitational potential, etc.

• ...

The neutron electric dipole moment d_{n}

Does the spin of the neutron couple to an electric field? Hamiltonian of a neutron in a magnetic field

$$\mathcal{H} = -\mu_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{B}$$

The neutron electric dipole moment d_{n}

Does the spin of the neutron couple to an electric field? Hamiltonian of a neutron in a magnetic field and an electric field

$$\mathcal{H} = -\mu_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{B} - d_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{E}$$

The UCN facility at TRIUMF

The neutron electric dipole moment d_{n}

Does the spin of the neutron couple to an electric field? Hamiltonian of a neutron in a magnetic field and an electric field

$$\mathcal{H} = -\mu_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{B} - d_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{E}$$

The UCN facility at TRIUMF

The neutron electric dipole moment d_{n}

Does the spin of the neutron couple to an electric field? Hamiltonian of a neutron in a magnetic field and an electric field

$$\mathcal{H} = -\mu_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{B} - d_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{E}$$

Time reversal symmetry T is not conserved:

$$T\mathcal{H} = -\mu_{n} \frac{-\vec{\sigma}}{|\vec{\sigma}|} (-\vec{B}) - d_{n} \frac{-\vec{\sigma}}{|\vec{\sigma}|} \vec{E} \neq \mathcal{H}$$

The UCN facility at TRIUMF

The neutron electric dipole moment d_{n}

Does the spin of the neutron couple to an electric field? Hamiltonian of a neutron in a magnetic field and an electric field

$$\mathcal{H} = -\mu_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{B} - d_{\rm n} \frac{\vec{\sigma}}{|\vec{\sigma}|} \vec{E}$$

Time reversal symmetry T is not conserved:

$$\mathbf{T}\mathcal{H} = -\mu_{\mathbf{n}} \frac{-\vec{\sigma}}{|\vec{\sigma}|} (-\vec{B}) - d_{\mathbf{n}} \frac{-\vec{\sigma}}{|\vec{\sigma}|} \vec{E} \neq \mathcal{H}$$

CPT theorem: T-violation \Leftrightarrow CP-violation.

nEDM ○●○○○ The UCN facility at TRIUMF

The Baryon asymmetry of our universe (BAU)

In our universe matter is much more abundant than antimatter

$$\eta = \left(\frac{n_{\rm B} - n_{\bar{\rm B}}}{n_{\gamma}}\right); \quad \eta(\text{observed}) = (6.15 \pm 0.15) \cdot 10^{-10}$$

Standard model (SM) prediction:

 $\eta(\mathrm{SM}) \approx 10^{-18}$

The Baryon asymmetry of our universe (BAU)

In our universe matter is much more abundant than antimatter

$$\eta = \left(\frac{n_{\rm B} - n_{\bar{\rm B}}}{n_{\gamma}}\right); \quad \eta(\text{observed}) = (6.15 \pm 0.15) \cdot 10^{-10}$$

Standard model (SM) prediction:

 $\eta({\rm SM})\approx 10^{-18}$

nEDM ○○●○○

The UCN facility at TRIUMF 000000

Limits on the nEDM

nEDM ○○●○○

The UCN facility at TRIUMF

Limits on the nEDM

nEDM ○○○●○ The UCN facility at TRIUMF 000000

How to measure an nEDM?

- Apply a magnetic field \vec{B}

$$hf_n = 2\mu_n B$$

nEDM ○○○●○ The UCN facility at TRIUMF

How to measure an nEDM?

- Apply a magnetic field \vec{B} and an electric field $\vec{E}\uparrow\uparrow$ or $\uparrow\downarrow$

 $hf_{\rm n} = 2\mu_{\rm n}B \pm 2d_{\rm n}E$

nEDM ○○○●○ The UCN facility at TRIUMF

How to measure an nEDM?

- Apply a magnetic field \vec{B} and an electric field $\vec{E}\uparrow\uparrow$ or $\uparrow\downarrow$

$$hf_{\rm n} = 2\mu_{\rm n}B \pm 2d_{\rm n}E$$

 Extract nEDM d_n from the difference of Larmor precession frequencies in ↑↑ or ↑↓ fields:

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)}$$

February 18, 2017

nEDM ○○○●○ The UCN facility at TRIUMF

How to measure an nEDM?

- Apply a magnetic field \vec{B} and an electric field $\vec{E}\uparrow\uparrow$ or $\uparrow\downarrow$

$$hf_{\rm n} = 2\mu_{\rm n}B \pm 2d_{\rm n}E$$

 Extract nEDM d_n from the difference of Larmor precession frequencies in ↑↑ or ↑↓ fields:

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)}$$

• How to measure the neutron Larmor precession frequency?

February 18, 2017

The Ramsey method of separated oscillatory fields

 $f_{\rm n}$ is extracted by a clock comparison between the neutrons and an external, precise (10^{-11} relative), oscillator.

nEDM 00000 The UCN facility at TRIUMF

The UCN facility at TRIUMF

Collaborating institutions:

KEK, RCNP, University of Osaka UBC, UNBC, SFU, University of Winnipeg, University of Manitoba **Goals:**

- Build UCN source with world leading densities ($\sim 100/ccm$ at experiment)
- Measure the nEDM at $10^{-27}\,e{\rm cm}$ precision
 - Phase 1: "old" RCNP equipment used at TRIUMF (Vertical UCN source & nEDM apparatus)
 - Phase 2: upgrade UCN source (Horizontal geometry) and install new next generation nEDM apparatus
- Establish UCN user facility via second UCN port and attract international scientific community

nEDM 00000 The UCN facility at TRIUMF

The UCN facility at TRIUMF

February

nEDM 00000 The UCN facility at TRIUMF

The UCN facility at TRIUMF

nEDM 00000 The UCN facility at TRIUMF

The UCN facility at TRIUMF

Commissioned!

First beam on target \Rightarrow production of thermal and cold neutrons

nEDM 00000 The UCN facility at TRIUMF

The UCN facility at TRIUMF

$\begin{array}{c} \mbox{Commissioned!} \\ \mbox{First beam on target} \Rightarrow \mbox{production of thermal and cold} \\ \mbox{neutrons} \end{array}$

nEDM 00000 The UCN facility at TRIUMF

The UCN facility at TRIUMF

Ongoing work: Installation of converter cryostat for UCN production in superfluid He

1EDM

The UCN facility at TRIUMF

The nEDM experimental setup; Phase I

nEDM 00000 The UCN facility at TRIUMF ○○○○●

The nEDM experimental setup; Phase 2

February

EDM

The UCN facility at TRIUMF 000000

Thank you for your attention!

February 18, 2017

17 / 20 Beatrice Franke

nEDM 00000 The UCN facility at TRIUMF 000000

Backup slides

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 611, Issues 2-3, 1-11 December 2009, Pages 318-321

Particle Physics with Slow Neutrons

Q-BOUNCE—Experiments with quantum bouncing ultracold neutrons

Tobias Jenke^{a, b, 1, M}, David Stadler^b, Hartmut Abele^{a, b,} ¹, Peter Geltenbort^c

^a Physik-Department E18, Technische Universität München, Garching, Germany

^b Physikalisches Institut, Heidelberg, Germany

° Institut Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France

Available online 6 August 2009

February 18, 2017

nEDM 00000 The UCN facility at TRIUMF

Set up of the Q bounce experiment

nEDM 00000 The UCN facility at TRIUMF 000000

Required sensitivity

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)}$$

nEDM 00000 The UCN facility at TRIUMF 000000

Required sensitivity

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)} = \frac{h\Delta f - \mu_{\rm n}\Delta B}{4E}$$

nEDM 00000 The UCN facility at TRIUMF 000000

Required sensitivity

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)} = \frac{h\Delta f - \mu_{\rm n}\Delta B}{4E}$$

- Cancel magnetic field changes ΔB ?
- Sensitivity $\sigma(d_{\mathrm{n}})$ determines required sensitivity to ΔB

nEDM 00000 The UCN facility at TRIUMF 000000

Required sensitivity

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)} = \frac{h\Delta f - \mu_{\rm n}\Delta B}{4E}$$

- Cancel magnetic field changes ΔB ?
- Sensitivity $\sigma(d_{\rm n})$ determines required sensitivity to ΔB

$$\sigma(d_{\rm n})_{\rm stat} = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

February 18, 2017

nEDM 00000 The UCN facility at TRIUMF 000000

Required sensitivity

$$d_{\rm n} = \frac{h\left(f_{\rm n}^{\uparrow\uparrow} - f_{\rm n}^{\uparrow\downarrow}\right) - \mu_{\rm n}\left(B^{\uparrow\uparrow} - B^{\uparrow\downarrow}\right)}{2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)} = \frac{h\Delta f - \mu_{\rm n}\Delta B}{4E}$$

- Cancel magnetic field changes ΔB ?
- Sensitivity $\sigma(d_{\rm n})$ determines required sensitivity to ΔB

$$\sigma(d_{\rm n})_{\rm stat} = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

 $\Rightarrow \sigma(\Delta B)_{\text{cycle}} \ll 2.4 \text{pT} \quad \& \quad \sigma(\Delta B)_{\text{run}} \ll 160 \text{fT}$