Compensation of Magnetic Fields in the TRIUMF nEDM Experiment

Shomi Ahmed
University of Manitoba/ University of Winnipeg

WNPPC February 18, 2017

Motivation Behind nEDM Experiment

From https://todaysnews2.blogspot.ca/2015/09/matter-and-antimatter-are-mirror-images.html

Experimentally¹,
$$\eta = \frac{\eta_B - \eta_{B'}}{\gamma} = 6 * 10^{-10} \frac{excess \ baryons}{photon}$$

Sakharov Conditions (1967) for Baryogenesis

- Baryon number violation
- C and CP violation
- Departure from thermodynamic equilibrium

Andrei Sakharov

Standard Model fails to explain. Reason: Not enough CP violation.

Requires

Additional CP violation near TeV scale

In turn,

- Generating a nEDM to be 10^{-26} 10^{-28} e-cm.
- The current best upper limit² set by Sussex/RAL/ILL nEDM experiment is 3.0×10^{-26} e-cm.
- The nEDM experiment at TRIUMF is aiming at the 10⁻²⁷ e-cm level in Phase 2 operations.

How To Measure nEDM?

Now, if the magnetic field is very stable and homogeneous,

$$d_{n} = \frac{h(v_{\uparrow\uparrow} - v_{\uparrow\downarrow})}{4E}$$

The UCN Facility at TRIUMF

Magnetic Field Compensation System

nEDM experiment requirements-

 $B_o = 1 \mu T$, Stability < pT & Homogeneity < nT/m

 $B_{\rm ext} \approx 400 \, \mu T$

Need to Design Active Shield

Active shield goals-

- ➤ Stability of field surrounding MSR ≤ 100 nT.
- Reduce 400 μT background (avoid saturation).
- > Ability to open the door without magnetizing internal layers.

Prototype Active Magnetic Field Compensation System at U of Winnipeg (One Dimensional Control)

One Dimensional Control Results

• $B_k^{meas} = B_k^{uncomp} + B_k^{coils}$

- Allan Deviation, $\sigma_{ADEV} = \sqrt{\frac{1}{2} < (y_{n+1} y_n)^2} > 0$
 - $\rightarrow y_n$ nth average over τ .
- Shielding Factor, $S_k(\tau) = \frac{\sigma_{ADEV}(B_k^{uncomp})}{\sigma_{ADEV}(B_k^{meas})}$

Shielding Factor > 1 indicates success.

Multi-Dimensional Control

$$B_k^{coils} = \sum_j M_{kj}.I_j \rightarrow \Delta I_j = \sum_j M_{jk}^{-1}.(B_k^{goal} - B_k^{meas})$$

- Problem
 - Inverse of non-square matrix.
 - Wildly varying currents and poor control away from sensor positions.
- Solution*
 - Use pseudoinverse with Tikhonov regularization.
 - Regularization Parameter, r
 - $r \rightarrow -\infty$ means non regularized (big current fluctuations).
 - $r \to +\infty$ means $M^{-1} \to 0$ (no control).

Monte Carlo Method to Find M^{-1}

1. Generate "reasonable" random B at sensor positions.

- 2. Find the "best" value of r
 - > Trading off small current fluctuations $(r \to +\infty)$ against small magnitude field fluctuations $(r \to -\infty)$.

3. Repeat for many different random B's and average to find best r.

Result

Conclusion: Using matrix from B. Franke thesis, same r is found.

Next Steps

- Build matrix *M* for our system.
- Simulate shield and coils to determine the best positions for fluxgate.
- Design the DAQ to meet sampling rate, resolution and noise requirements.
- Study possibility of saturation and design accordingly.

Conclusion

- Non-zero nEDM tests T-symmetry, new physics violating CP symmetry.
- TRIUMF nEDM sensitivity 10⁻²⁷ e-cm in Phase 2 operations.
- nEDM experiment requires very stable (< pT) and homogeneous (< nT/m) magnetic field.
- Need suitable active magnetic compensation system.

Thank You

