

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Accelerator Physics Developments for Rare Isotope Facilities **RIUMF** Canada's national laboratory

for particle and nuclear physics

Accelerator Physics Developments

for Rare Isotope Facilities

Oliver Kester

Associate Lab Director - Accelerators

February 17, 2017

Oliver Kester

February 17, 2017

- редимири в Сомнов Сомнов Сомнов Сомнов Соманов Соманов Соманов Соманов Соманов Соманов Соманов Соманов Соманов
1991 Challenges of RIB production
2014 Particle accelerators for ISOL and fragmentation facilities FREE SERVIER AND THE MARK POST OF REPORT OF RIST PRID PRID PRID PRID PRID PRIDENT PARTICLE accelerators for ISOL and fragmentation FREE CHINGTON CONTINUMENT CONTINUMENT CONTINUMENT CONTINUMENT CONTINUITY CONTIN PETRIUMF

• Overview particle accelerators for RIB producti

– Challenges of RIB production

– Particle accelerators for ISOL and fragmentation faci

• Some accelerator developments

– Ion source - charge state booster

– **Diverview particle accelerators for RIB produ**

- Challenges of RIB production

- Particle accelerators for ISOL and fragmentation f

Some accelerator developments

- Ion source - charge state booster

- Vacuum effects

-**DVerview particle accelerators for**

- Challenges of RIB production

- Particle accelerators for ISOL and fra

Some accelerator developments

- Ion source - charge state booster

- Vacuum effects

- Accelerator cavities – FRIST CONTROVERT AND MONOROTED THE MANUSCRET CONTROVERT CONTROVERTIES

That conditions – Superconduction

Accelerator developments

Accelerator developments

Accelerator cavities – superconducting

Accelerator cavities – s
	-
	-

Outline

- -
	-
	-
	-

Overview particle accelerators for RIB production **Overview particle
accelerators for RIB**
production

Production of rare isotopes

Driver accelerators

Driver accelerator challenges

Post or re-accelerator

IMP
Internation Online (ISOL) Deams, beam stopping and re-acceleration of

Internation of Stripping or charge state breeding

The Stripping or charge state breeding

The Stripping or charge state breeding

The Stripping or Post acceleration of ISOL beams, beam stopping and re-acceleration of beams from fragmentation

- Stripping or charge state breeding
- Folyer China and Stopher School (September 2017, Bandf, AB, Canada 7 Performent

Februarz 17, 2017

Februarz 17, 2017

Thin production the secole rator

Radioactive ion beam

Experiment

Februarz 17, 2017

WINPPC 2017, Ban • Linear accelerators or cyclotrons

Post or re-accelerator challenges

INTERNATION CONCRETENT CONCRETENT CONCRETENT ONLY THE CONCRETENT OF SEPARATION ONLY A CONCRETENT OF SEPARATION CONCRETENT CONCRETENT CONCRETENT OF CONCRETENT CONCRETENT OF CONCRETENT OF CONCRETENT OF CONCRETENT OF CONCRET Efficiency in each step, beam energy variation and stopped beams

- Beam stopping (in case of PF)
- Charge state breeding
- Low intensity beam diagnostics (Single particle sensitivity)

Primary beam driver: Cyclotron, 500 MeV, H-ISOL facility with highest power driver beam Facilities
Primary beam driver:
Cyclotron, 500 MeV, H
ISOL facility with highest power
driver beam
Isotope Separator and Accelerator
facility - ISAC
ISAC-I: Normal conducting-linac,
0,15-1,5 MeV/u
ISAC II: Superconducting-Example ISOL: TRIUMF facilities

ISAC-I Isotope Separator and Accelerator Low and facility - ISAC

energy ISAC-I: Normal conducting-linac, 0,15-1,5 MeV/u ISAC-II: Superconducting-linac, 5-11 MeV/u

> Advanced rare isotope laboratory - ARIEL:

Superconducting electron linac 50 MeV, 10 mA, cw

Some accelerator developments Some accelerator
developments
Februarz 17, 2017
WNPPC 2017, Banff, AB, Canada 11

Ion sources

- \bullet **FRIUMF**
• Ion sources that deliver high current
(mA to A), but low charge states
 \rightarrow high current sources
(Penning source, plasmatron sources) (mA to A), but low charge states \rightarrow high current sources MEVVA, volume sources) • Ion sources that deliver high current

(mA to A), but low charge states
 \rightarrow high current sources

(Penning source, plasmatron sources,

MEVVA, volume sources)

• Ion sources that deliver high charges

states (up to U
- states (up to U^{92+}), but low intensities A^{80} \rightarrow high charge state sources $\frac{1}{100}$ as (Electron Cyclotron Resonance Ion Ion sources that deliver high current

(mA to A), but low charge states
 \rightarrow high current sources

(Penning source, plasmatron sources,

MEVVA, volume sources)

Ion sources that deliver high charges

states (up to U⁹²⁺ Ion sources that deliver high current

(mA to A), but low charge states
 \rightarrow high current sources

(Penning source, plasmatron sources,

MEVVA, volume sources)

Ion sources that deliver high charges

states (up to U⁹²⁺

Discharge power: 50 kW $(13,3 \text{ MW/cm}^2)$) Discharge current: ~1 kA Duty Cycle: 1 Hz, 1 ms

New cathode materials required (alloys) \rightarrow avoid to melt cathodes

Metal Vapor Vacuum Arc (MeVVA)

Charge state breeding

Electron Beam Ion Source (EBIS)

Injection of 1+ ions into EBIS/T

Dynamic Vacuum effect and collimation

Flydrogen Density in Cryogenic Areas of SIS100 $[10^6/\text{cm}^3]$
 $\frac{15}{25}$
 $\sum_{\substack{a \text{ is a prime} \\ a \text{ is a prime}}}}$

- enough for stable operation
- sensitive to temperature rises $\sqrt{\frac{1}{2}}$

Cryogenic Surface Pumping

Surface coverage and temperature has been linked to residual gas density

Accelerator cavities

SRF cavity examples

- PURIUMF
• Quarter wave and half wave
resonators
(QWR/HWR)
• Coaviel resenators used at ISAC resonators (QWR/HWR) **@TRIUMF**
• Quarter wave and half wave
resonators
(QWR/HWR)
• Coaxial resonators used at ISAC
and REX-ISOLDE
- and REX-ISOLDE

Superconducting Linacs

Superconducting cavities have been pursued since ~1960 in the hope of reducing the power dissipation in the walls to zero.

Success came in the 70s and 80s using niobium:

- now ISAC-II)
- then electrons (many cavities same size $\frac{4.5 K}{Cry\space \text{Cry}\space \text{cycg}$ Cornell, CEBAF, LEP)
-

Furthermore, much higher fields can be produced – up to 30-50 MV/m.

Example: ISAC II SRF linac

New Beam Profile Monitor in ESR

bunch width detector: $MCP + phosphor + CCD$ rf-deflector: $\alpha_{\text{max}} = 3^0$ 36 MHz or 108 MHz $(= 3v)$ E

- Bunch shape monitor uses secondary electrons produced by the ion beam
- Simulation confirm the measurements and reveal the time resolution of 5 ps $\frac{1}{\frac{3}{5}}$
- Bunch shape can be used to determine the long. emittance

Summary

-
- Practions
• RIB facilities
- Challenges of RIB production -ISOL a
- High intensity primary beam driver **UMF**
RIB facilities
— Challenges of RIB production -ISOL and fragmentation
— High intensity primary beam driver
— High efficiency post accelerator UMF

2IB facilities

— Challenges of RIB production -ISOL and fragme

— High intensity primary beam driver

— High efficiency post accelerator

— Processivie UMF

RIB facilities

— Challenges of RIB production -ISOL and frag

— High intensity primary beam driver

— High efficiency post accelerator

Research in FRIUMF

• RIB facilities

- Challenges of RIB production -ISOL a

- High intensity primary beam driver

- High efficiency post accelerator

• Research in

- ion sources - charge state booster

- vacuum effects \rightarrow dynami UMF

- Challenges of RIB production -ISOL and fragmentation

- High intensity primary beam driver

- High efficiency post accelerator

Research in

- ion sources - charge state booster

- vacuum effects → dynamic

- accel UMF

- Challenges of RIB production -ISOL and fragmentation

- High intensity primary beam driver

- High efficiency post accelerator

Research in

- ion sources - charge state booster

- vacuum effects → dynamic

- accel MB facilities

- Challenges of RIB production -ISOL and fragmentation

- High intensity primary beam driver

- High efficiency post accelerator

Research in

- ion sources - charge state booster

- vacuum effects → dynami RIB facilities

- Challenges of RIB production -ISOL and fra

- High intensity primary beam driver

- High efficiency post accelerator

Research in

- ion sources - charge state booster

- vacuum effects → dynamic

- acc
	-
	-

-
-
- Fraction in Alternative post accelerator

Fraction in Alternative Section in Alternative Section of The Section of The Section of The Section of The Section of Alternative Section of Alternative Section of Section of The - Challenges of RIB production -ISOL and

- High intensity primary beam driver

- High efficiency post accelerator

Research in

- ion sources - charge state booster

- vacuum effects \rightarrow dynamic

- accelerator cavities
	- - \rightarrow non destructive
	-

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci! U
Follow us at TRIUMFLab
Follow us at TRIUMFLab

Targets and separators

Target and separator challenges

Existing GSI accelerator facility

What is a "particle accelerator"?
tromagnetic forces to

An accelerator is a device that uses electromagnetic forces to accelerate and guide charged particles. PRIUMF

An accelerator is a device that uses electric accelerate and guide charged particles.

THE ESSENTIALS;

• Particle source (electrons, protons, ions)

• Vacuum PRIUMF

An accelerator is a device that uses electric accelerate and guide charged particles.

THE ESSENTIALS;

• Particle source (electrons, protons, ions)

• Vacuum

• Electric field for acceleration

• Magnetic and/or e

THE ESSENTIALS;

- (electrons, protons, ions)
-
-
- fields for focusing and steering
-

Februarz 17, 2017

- (Electrons, Ions) \rightarrow Production of a plasma via discharge
- impact ionisation

Principle of plasma ion sources

Extraction system Plasma extraction = Beam shaping and transport

RF-accelerator principle

Multiple use of the same alternating voltage

Frequency: 1 MHz

Electric Field = 25000 V

Phase focusing

The electric fields in an RF-accelerator \uparrow \downarrow voltage are time dependent. The field strength U_{max} depends on the time a particle enters \overline{U} the acceleration gap.

 $eU(t) = eU_{\text{max}}\sin\Psi_0$

is the energy gain in the gap if the $\Delta \Psi$ particle arrives in gap center at Ψ_0

Synchronous phase in front of the \rightarrow longitudinal focusing

perfect synchronism in the linac

Beam phase space ellipse

