

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Accelerator Physics Developments for Rare Isotope Facilities

Oliver Kester Associate Lab Director - Accelerators

February 17, 2017

- Overview particle accelerators for RIB production
 - Challenges of RIB production
 - Particle accelerators for ISOL and fragmentation facilities

Outline

- Some accelerator developments
 - Ion source charge state booster
 - Vacuum effects
 - Accelerator cavities superconducting
 - Beam instrumentation and beam dynamics

Overview particle accelerators for RIB production

Februarz 17, 2017

Production of rare isotopes

Februarz 17, 2017

Driver accelerators

Februarz 17, 2017

Driver accelerator challenges

Februarz 17, 2017

Post or re-accelerator

separator

Post acceleration of ISOL beams, beam stopping and re-acceleration of beams from fragmentation

- Stripping or charge state breeding
- Linear accelerators or cyclotrons accelerator Ion source Isotope/Isobar Thin production separator target Driver as cell stopper accelerator quide Thick, hot production target Post accelerator Radioactive ion beam **Re-accelerator** Radioactive ion beam Experiment Experiment

Februarz 17, 2017

Post or re-accelerator challenges

Efficiency in each step, beam energy variation and stopped beams

- Beam stopping (in case of PF)
- Charge state breeding •
- Low intensity beam diagnostics (Single particle sensitivity)

Februarz 17, 2017

Example ISOL: TRIUMF facilities

Primary beam driver: Cyclotron, 500 MeV, H⁻ ISOL facility with highest power driver beam

Isotope Separator and Accelerator facility - ISAC

ISAC-I: Normal conducting-linac, 0,15-1,5 MeV/u ISAC-II: Superconducting-linac, 5-11 MeV/u

Advanced rare isotope laboratory - ARIEL:

Superconducting electron linac 50 MeV, 10 mA, cw

Example PF: Facility for Antiproton and Ion research - FAIR

Februarz 17, 2017

Some accelerator developments

Februarz 17, 2017

Ion sources

- Ion sources that deliver high current (mA to A), but low charge states
 → high current sources
 (Penning source, plasmatron sources, MEVVA, volume sources)
- Ion sources that deliver high charges states (up to U⁹²⁺), but low intensities
 → high charge state sources (Electron Cyclotron Resonance Ion Source - ECRIS, Electron Beam Ion Source - EBIS

Februarz 17, 2017

Discharge power: 50 kW (13,3 MW/cm²) Discharge current: ~1 kA Duty Cycle: 1 Hz, 1 ms

New cathode materials required (alloys) → avoid to melt cathodes

Metal Vapor Vacuum Arc (MeVVA)

Charge state breeding

Februarz 17, 2017

Electron Beam Ion Source (EBIS)

Februarz 17, 2017

Injection of 1+ ions into EBIS/T

Februarz 17, 2017

Dynamic Vacuum effect and collimation

Februarz 17, 2017

Cryogenic Surface Pumping

- Long term density stays low enough for stable operation
- Equilibrium density is very sensitive to temperature rises

Surface coverage and temperature has been linked to residual gas density

Februarz 17, 2017

Accelerator cavities

SRF cavity examples

- Quarter wave and half wave resonators (QWR/HWR)
- Coaxial resonators used at ISAC and REX-ISOLDE

Februarz 17, 2017

Superconducting Linacs

Success came in the 70s and 80s using niobium:

- first heavy ions (few cavities ATLAS at ANL, now ISAC-II)
- then electrons (many cavities same size Cornell, CEBAF, LEP)
- now protons (many cavities 1-GeV at SNS)

Furthermore, much higher fields can be produced – up to 30-50 MV/m.

Februarz 17, 2017

Example: ISAC II SRF linac

Februarz 17, 2017

New Beam Profile Monitor in ESR

- Bunch shape monitor uses secondary electrons produced by the ion beam
- Simulation confirm the measurements and reveal the time resolution of 5 ps
- Bunch shape can be used to determine the long. emittance

Februarz 17, 2017

Emittance transfer experiment (EMTEX)

Februarz 17, 2017

EMTEX-beam line and first results

Februarz 17, 2017

WNPPC 2017, Banff, AB, Canada

Summary

- RIB facilities
 - Challenges of RIB production -ISOL and fragmentation
 - High intensity primary beam driver
 - High efficiency post accelerator

Research in

- ion sources charge state booster
- vacuum effects \rightarrow dynamic
- accelerator cavities superconducting
- beam instrumentation
 - \rightarrow non destructive
- sophisticated beam dynamics

Februarz 17, 2017

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

Targets and separators

Februarz 17, 2017

Target and separator challenges

Februarz 17, 2017

Existing GSI accelerator facility

What is a "particle accelerator"?

An accelerator is a device that uses electromagnetic forces to accelerate and guide charged particles.

THE ESSENTIALS;

- Particle source (electrons, protons, ions)
- Vacuum
- Electric field for acceleration
- Magnetic and/or electric fields for focusing and steering
- Controls

Februarz 17, 2017 WNPPC 2017, Banff, AB, Canada

- Production of charged particles (Electrons, lons) → Production of a plasma via discharge
- Ionisation of atoms → Electron impact ionisation

Principle of plasma ion sources

Plasma extraction = Beam shaping and transport

Februarz 17, 2017

RF-accelerator principle

Multiple use of the same alternating voltage

 \rightarrow Wideroe principle!

1928 proof of the rf- acceleration principle by Rolf Wideroe in Berlin

Frequency: 1 MHz

Electric Field = 25000 V

Phase focusing

The electric fields in an RF-accelerator are time dependent. The field strength depends on the time a particle enters the acceleration gap.

 $eU(t) = eU_{\max}\sin\Psi_0$

is the energy gain in the gap if the particle arrives in gap center at Ψ_0

Synchronous phase in front of the crest (negative synchronous phase) → longitudinal focusing

Synchronous (perfect) particle \rightarrow perfect synchronism in the linac

Februarz 17, 2017

WNPPC 2017, Banff, AB, Canada

35

Beam phase space ellipse

Februarz 17, 2017