Identification of the 2⁺_{ms}mixed-symmetry state in ⁵²Ti using the alpha transfer reaction

WNPPC 2017 Conference

Fuad Arif Ali University of Guelph

Permanent address: College of Education, Department of Physics, University of Sulaimani, KRG-Iraq

Out lines

• Brief Introduction

• Experimental set up

• Some Preliminary Results

• Conclusion.

Neutron-Rich ⁴⁸Ca doubly magic nucleus

J.D. Holt et al., Phys. Rev. C 90, 024312 (2014)

Introduction

 In spherical even-even nuclei the quadrupole interaction leads to so called proton-neutron mixed symmetry (MS) states. Coupling of 2⁺ proton and 2⁺ neutron states. The wave functions:

• The MS state are sensitivity to the underlying sub shell closure and their part of residual interaction. it used to specify the microscopic structure of shell closure. G. Rainoviski et. al. PRL (2006).

Mixed Symmetry State

- Strong M1 decay to the fully symmetric state 2^+_1 and weak collective decay strength to the ground state E2 transition.
- IBM-2, predict the cross section from alpha-transfer into MS state.

Experimental Set up

- Gamma-spectroscopy on ⁵²Ti has been performed using inverse kinematics to populate the states.
- MINIBALL germanium array at the Maier-Leibnitz-Laboratory in Munich.

6

Experimental Set up

CD particle Detector

Beam direction

⁴⁸Ca(¹²C,⁸Be)⁵²Ti

High-resolution **Miniball Ge detector array**. Before operating at the MLL (Munich), it was operational at REX-ISOLDE at Cern for over 10 years.

Particle Channel Vs Channel in CD Particle Detector

8

Prompt Gamma Ray Spectra from MINIBALL

Chart of Nuclei and Possible reaction Channels

PFe	50Fe	51Fe	52Fe	53Fe	54Fe	55Fe	56Fe	57Fe	58Fe	59Fe	60Fe	61Fe	62Fe	63Fe	64Fe
Mn	49Mn	50 M n	51 Mn	52 M n	53Mn	54Mn	55 M n	56Mn	57Mn	58M	59Mn	60Mn	61Mn	62Mn	63Mn
7Cr	48Cr	49Cr	50Cr	51Cr	52Cr	53Cr	54Cr	55Cr	56Cr	57Cr	58Cr	59Cr	60Cr	61Cr	62Cr
6V	47V	48V	49V	50V	51V	52 V	53V	54V	55V	56V	57V	58V	59V	60V	61V
5Ti	46Ті	47Ti	48Ti	49Ti	50Ti	51Ti	52Ti	53Ti	54Ti	55Ti	56Ti	57Ti	58Ti	59Ti	60Ti
4Sc	45Sc	4бSc	47.Sc	48Sc	495c	50 Se	51 Se	52Sc	53Se	54.Sc	55Sc	56Sc	57 Se	58Sc	59.Sc
3Ca	44Ca	45Ca	4бСа	47Ca	48Ca	49Ca	50Ca	51Ca	52Ca	53Ca	54Ca	55Ca	56Ca	57Ca	58Ca

Inspecting the Gamma-ray ⁴⁸Ca(¹²C,αn)⁵⁵Cr

Gamma Spectra for 2 Particle hit

⁴⁸Ca(d,p)⁴⁹Ca **No Doppler Shift Correction**

⁴⁸Ca(d,p)⁴⁹Ca Doppler Correction at the Segments

⁴⁸Ca(d,p)⁴⁹Ca Projections after Doppler Correction

At Core level: FWHM ~ 30keV at 2023keV Gamma-ray

Segment level: Improve FWHM ~ 20keV

Forward and backward Spectrum

Drawn at: 2017-02-08 14:23:16

16

Drawn at: 2017-02-08 14:19:19

at: 2017-02-13 15:58:53

Relative cross-Section of MS state to 2⁺₁ after alpha transfer

Conclusion

- There is unexpected large population of MS state in ⁵²Ti, even stronger in ¹⁴⁰Ba experimentally.
- Challenging our understanding of MS state and how they are populated in alpha transfer.
- Discrepancy between the theory and our understanding to the MS state.
- Fundamental information can be achieved on the size of valance shell in neutron-rich ⁴⁸Ca which may indicate change in shell evolution.

Thanks to My Collaborator

- Dennis Muecher
- Vinzenz Bildstein
- Maier-Leibnitz-Laboratory in Munich.

Thanks for your time!

