6th RaDIATE Collaboration Meeting Contribution ID: 48 Type: Poster ## High Emissivity Micro-machining for Increased Emissivity of Tantalum ISOL Target Containers Tuesday, 10 December 2019 17:00 (2 hours) TRIUMF's Advanced Rare IsotopE Laboratory (ARIEL) requires a new design of an ISOL target container that approaches an emissivity (ϵ) of 1, as is achieved at ISAC via cooling fins [1]. ARIEL's new target geometry precludes the use of cooling fins as a viable option for heat dissipation, leading to exploration of other high-emissivity options. Small-scale (μ m) surface modification is considered as a way to increase the emissivity [2,3,4]. Simulations were constructed using COMSOL Multiphysics to mimic basic reflectance measurement results from literature; the same model was then used to simulate tantalum micro-geometry surface structures and report the average reflectance. Geometries were found that increased the emissivity by greater than $\Delta\epsilon$ = 0.5 in a select wavelength band. Test pieces have been designed and will be used to validate the results of the simulations as well as explore the survival of the structure at \approx 2500 K. Primary author: Ms DONALDSON, Cassidy (TRIUMF) **Co-authors:** Mr CARBO, Alexander (TRIUMF); Dr GOTTBERG, Alexander (TRIUMF); Dr BABCOCK, Carla (TRIUMF); Mr MALDONADO MILLAN, Fernando Alejandro (UVIC/TRIUMF); Mr BROWNELL, Mathew (TRI-UMF); DAY GOODACRE, Tom (TRIUMF) **Presenter:** Ms DONALDSON, Cassidy (TRIUMF) Session Classification: Poster session