

Semileptonic B meson Tagging with Missing Energy: Performance of Full Event Interpretation Algorithm at Belle II

Friday, 13 February 2026 09:00 (15 minutes)

At Belle II, B mesons are produced in pairs nearly at rest. The Full Event Interpretation (FEI), a machine-learning based background-suppression method, reconstructs one of the B mesons in a well-known decay mode (the tag side). The remaining particles in the event are then used to reconstruct the signal B meson.

The Semileptonic FEI uses a hierarchical decay-chain reconstruction in which intermediate particle candidates are ranked with gradient-boosted decision trees, allowing reconstruction of tag-side Semileptonic decays such as $B \rightarrow D^* \ell \nu$. In this study, we extend the scope of the tag-side reconstruction by adopting tagging modes that tolerate missing soft photons and slow pions from $D^* \rightarrow D \pi/\gamma$ decays. The performance of this extended SL tag is evaluated using Monte Carlo simulation and 365 fb^{-1} of Belle II data, with the well-known benchmark decays $B \rightarrow D^{(*)} \ell \nu$ used for comparison. This work reports a sensitivity estimate of the extended Semileptonic tagging algorithm and provides a comparison to the conventional FEI tag at Belle II.

Your current academic level

MSc student

Your email address

xp@uvic.ca

Affiliation

University of Victoria

Supervisor email

kowalews@uvic.ca

Supervisor name

Prof. Bob Kowalewski

Primary authors: KOWALEWSKI, Bob (University of Victoria); HORAK, Philipp; PRASAD, Pranav (University of Victoria)

Presenter: PRASAD, Pranav (University of Victoria)

Session Classification: Electroweak Physics