

Search for Two-Proton Decay from the 6.15 MeV Resonance in ^{18}Ne with ACTAR TPC

Type I X-ray bursts are among the most frequent thermonuclear explosions we can observe, and can reveal important properties of accreting neutron star systems. Understanding their light curves requires detailed knowledge of the nuclear reactions that enable the transition from the hot CNO cycle towards explosive burning and the rp process. One such key breakout reaction is the $^{14}\text{O}(\alpha, p)^{17}\text{F}$ reaction, which at typical burst temperatures proceeds predominantly through a 6.15 MeV resonant state in ^{18}Ne . Although the energy and spin of this resonance are well established, its decay scheme remains uncertain. In particular, previous studies have reported inconsistent results for a possible two-proton decay branch, spanning several orders of magnitude, which could significantly affect the resonance's astrophysical contribution.

To resolve this discrepancy, we recently performed a resonant scattering experiment at TRIUMF using the Active Target and Time Projection Chamber (ACTAR TPC), a gaseous active target that enables precise reconstruction of charged-particle tracks and reaction vertices. A 5.5 MeV/u ^{17}F beam was delivered into ACTAR TPC that was filled with pure hydrogen (95%) mixed with isobutane (5%) gas, serving as a proton target. This measurement provides the first direct search for the two-proton decay of the 6.15 MeV resonance in ^{18}Ne and aims to determine the branching ratios between the $2p$, p , and α decay channels.

Your current academic level

Postdoctoral researcher

Your email address

artemis.tsantiri@uregina.ca

Affiliation

University of Regina

Supervisor email

Gwen.Grinyer@uregina.ca

Supervisor name

Gwen Grinyer

Primary author: TSANTIRI, Artemis (University of Regina)

Co-authors: Prof. GRINYER, Gwen (University of Regina); ROGER, Thomas (GANIL); BLANCO CALVIÑO, Iván (Universidade de Santiago de Compostela); FERNANDEZ DOMINGUEZ, Beatriz (University of Santiago de Compostela); FISICHELLA, Maria (GANIL); GIOVINAZZO, Jérôme (LP2iB - CNRS / Université de Bordeaux); LOZANO GONZÁLEZ, Miguel (Universidade de Santiago de Compostela); NICOLLE, Charly (GANIL); PANCIN, Julien (GANIL); AUNGWA AVAA, Abraham (TRIUMF); ANDREOIU, Corina (Simon Fraser University); PADILLA-RODAL, Elizabeth (Institute of Nuclear Sciences ICN-UNAM); ALJARRAH, Fatima (University of Regina); WU, Frank (Tongan) (Simon Fraser University); ASCH, Heinz (Simon Fraser University); VINOD, Kalidas (TRIUMF); DINE-NIS, Laurie (GANIL); JIZHONG, Liu (TRIUMF / University of Victoria); MADHU, Madhu (Simon Fraser University); ALCORTA MORENO, Martin (TRIUMF); QUINN, Mira (University of Regina); KANUNGO, Rituparna (TRIUMF); SAWANT, Saurabh (TRIUMF / Saint Mary's University); MURILLO MORALES, Silvia (TRIUMF); CHAKRABORTY,

Soham (TRIUMF); PLANTE, Sydney (University of Regina); PEREIRA LOPEZ, Xesus (IBS Center for Exotic Nuclear Studies); ZHU, Yiyi (TRIUMF); SULLIVAN, Zach (University of Regina)

Presenter: TSANTIRI, Artemis (University of Regina)

Session Classification: Poster session