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High-Luminosity - LHC Operating Conditions
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- Proton beam intensity increased by more than a factor of 2

- Increase average number of interactions per Bunch Crossing (BC) from 60 to 200
- Significant increase in detector occupancy

- Detectors have to be upgraded to maintain physics performance [2]



ATLAS

and the Liquid Argon (LAr) Calorimeter

ATLAS: general-purpose detector at the LHC

- Made up of multiple subdetectors, each
designed for specific measurements

LAr hadronic
end-cap (HEC)
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LAr Calorimeter: subdetector

- Measures energy of electrons, photons,
and hadrons

LAr electromagnetic
end-cap (EMEC)

LAr electromagnetic
barrel (EMB)
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How the LAr Calorimeter Works

Charged particles induce ionization in LAr

Amplitude
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How the LAr Calorimeter Works
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How the LAr Calorimeter Works

Charged particles induce ionization in LAr

lons/e- drift under an electric field and create current

Current amplified/shaped by front end electronics
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How the LAr Calorimeter Works

(14 TeV)
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How the LAr Calorimeter Works

(14 TeV)
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[ Energy is reconstructed via signal processing ] Digitized signal is called ADC [5]
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Amplitude

Challenges with LAr Signal Detection

Pulse height is proportional to energy deposited

Out of time pileup: Because of low ion mobility, detector takes a long time to reset
— Previous pulses can bias energy reconstruction
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Amplitude

Challenges with LAr Signal Detection

Pulse height is proportional to energy deposited

Out of time pileup: Because of low ion mobility, detector takes a long time to reset

— Previous pulses can bias energy reconstruction
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More interactions per Bunch Crossing (HL-LHC) — More pileup
New signal processing algorithm required




Current Approach

Optimal Filter (OF)
- Estimates energies using weighted
sum of latest ADC samples in real time
- Weights are derived to maximize signal  apc Recosri‘;::lded
to noise ratio
- But... can be biased in the presence of
out-of-time pileup




Current Approach

Optimal Filter (OF)
- Estimates energies using weighted
sum of latest ADC samples in real time
- Weights are derived to maximize signal  apc Recosri‘;::lded
to noise ratio
- But... can be biased in the presence of
out-of-time pileup

Forward
Correction

Proposed Approach
Optimal Filter + Forward Correction (OFFC)
- Stores reconstructed energy and
multiplies by known pulse shape
- Subtracts off scaled pulse shape to
remove out of time pileup

Reconstructed

ADC Optimal Filter Signal




Model Validation



Towers in Sampling 3
Ap~An =0.0245-0.05

Single Cell Studies

- Tests stability and long term performance

- One cell for a “long” time
NI
. : T NN
- 20 million Bunch Crossings (BC) P

- Realistic simulation and noise

- Randomly injected signals

- 200 interactions per BC
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Out-of-time Pileup Effects

Plotting only BC with a signal and <30 BC since most recent pulse
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Out-of-time Pileup Effects

Plotting only BC with a signal and <30 BC since most recent pulse
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Performance Metrics

Plotting only BC with a signal and <30 BC since most recent pulse
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Multi Cell Studies

Tests real detector performance

182,468 independent cells for a “short” time (32 BC)

Realistic simulation and noise

Signals simulated from Z—ee events

- Goal is to estimate energy of e end-cop (HEC) @

LAr electromagnetic
end-cap (EMEC)

LAr electromagnetic
barrel (EMB)

L

LAr forward (FCal

......

) m‘

y
[4]

11



Energy of Reconstructed Electrons

Plotting electrons reconstructed in high pile up regions

ATLAS Simulation Work In Progress (14 TeV)
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Conclusion - Forward Correction Works

S— 1. Eliminates out-of-time pileup with better handling of overlappin
Correction signals

Improves performance with low additional computational cost

3. Is stable as demonstrated by the single cell studies

4. Works in realistic environments as demonstrated by the multi

Signal cell studies

ADC Optimal Filter Reconstruction
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Conclusion - Forward Correction Works

Forward
Correction

ADC Optimal Filter

Next Steps

Signal
Reconstruction

Eliminates out-of-time pileup with better handling of overlappin
signals

Improves performance with low additional computational cost

Is stable as demonstrated by the single cell studies

Works in realistic environments as demonstrated by the multi
cell studies

1. Use more data in multi-cell studies
2. Compare the performance of forward correction algorithms with deep learning
3. Develop and implement forward correction of HL-LHC hardware (FPGAs)
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