

Beta-Delayed Charged-Particle Emission From ^{20}Mg

Thursday, 12 February 2026 19:15 (15 minutes)

One of the most important nuclear reactions in astrophysics is the $^{15}\text{O}(\alpha, \gamma)^{19}\text{Ne}(p, \gamma)^{20}\text{Na}$ reaction, which provides a possible breakout pathway from the hot CNO cycle in stars. Studying this reaction directly in the laboratory is challenging, instead, an indirect study using β -decay proton and α decays of ^{20}Mg was recently performed at TRIUMF. The experiment used the Gamma-Ray Infrastructure for Fundamental Investigations of Nuclei (GRIFFIN) gamma-ray spectrometer and, for the first time, the Regina Cube for Multiple Particles (RCMP), a newly developed silicon detector array designed to detect low-energy protons and alpha particles. This setup enables the most sensitive search to date for rare decay branches and gamma-ray transitions from astrophysically important states. My thesis focuses on calibrating the RCMP array and analyzing this new high-statistics dataset to constrain the properties of resonances that play a key role in stellar nucleosynthesis.

Your current academic level

MSc student

Your email address

spz328@uregina.ca

Affiliation

University of Regina

Supervisor email

gwen.grinyer@uregina.ca

Supervisor name

Dr Gwen Grinyer

Primary author: PLANTE, Sydney (University of Regina)

Presenter: PLANTE, Sydney (University of Regina)

Session Classification: Nuclear structure

Track Classification: Nuclear structure