

Inverse kinematics measurements of key resonances in $^{15}\text{N}(a,g)^{19}\text{F}$ with DRAGON

The origin of the only stable fluorine isotope, ^{19}F , has remained a longstanding question in nuclear astrophysics due to persistent discrepancies between observations and model-predicted abundances constrained by laboratory reaction rates and nuclear physics input. Recent work by Cristallo *et al.* highlighted that the reaction rate of $^{15}\text{N}(a,g)^{19}\text{F}$ –one of the key production channels –may carry significantly larger uncertainties than previously assumed. By exploring reaction-rate variations beyond the standard error estimates, they demonstrated improved agreement between predicted and observed ^{19}F abundances, thereby suggesting that unaccounted nuclear physics uncertainties could reconcile this mismatch. This result has motivated new experimental efforts to measure the rate-determining resonances of the $^{15}\text{N}(a,g)^{19}\text{F}$ reaction, aiming to refine fluorine nucleosynthesis models and resolve the ^{19}F abundance puzzle.

The $^{15}\text{N}(a,g)^{19}\text{F}$ reaction rate at relevant temperatures is determined by a number of narrow resonances, together with the direct-capture component and the tails of the two broad resonances at $E_{cm} = 1323$ and 1487 keV. Discrepancies in the results of recent measurements regarding the exact energies and strengths of the resonances at $E_{cm} = 1323$ and 1487 keV have triggered a new measurement at the DRAGON recoil separator at TRIUMF. The former is of particular note because of its use as a reference resonance for measurements of other rate-determining resonances.

Using the inverse kinematics method at the DRAGON facility, we directly measured the resonance energies and strengths of the two broad resonances. In my presentation, I will outline the scientific motivation for studying this reaction rate, the analysis method used, and I will discuss the results in relation to the literature.

Your current academic level

Undergraduate student

Your email address

awebster@triumf.ca

Affiliation

TRIUMF

Supervisor email

lennarz@triumf.ca

Supervisor name

Annika Lennarz

Primary author: WEBSTER, Aeyla (TRIUMF)

Co-authors: LENNARZ, Annika (TRIUMF); REED, Ben (TRIUMF); CHARON, Luis Enrique (TRIUMF); LORIA, Mallory (University of Victoria)

Presenter: WEBSTER, Aeyla (TRIUMF)

Session Classification: Poster session