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What is neutrinoless B3 decay?

BB decay (2vBB) Neutrinoless B3 decay (Ov3B)
U
p p
p p
U
(Observed) (Hypothetical)
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What is neutrinoless B3 decay?

© )
Ovf3f3 probes:

Majorana/Dirac nature of neutrinos

Lepton-number violation

» Baryon asymmetry of
universe

Absolute neutrino mass scale

Exotic BSM mechanisms
» Heavy neutrinos? Seesaw

mechanisms? Sterile neutrinos?
< / J
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What is neutrinoless B3 decay?

@ )

ngp probes: Standard Model
 Majorana/Dirac nature of neutrinos CCL AR

Hypothetical heavy
neutrinos

* Lepton-number violation
» Baryon asymmetry of
T oo SRS

universe
« Absolute neutrino mass scale
« Exotic BSM mechanisms
| »Heavyneutrinos? Seesaw
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What is neutrinoless B3 decay?

© )
Ovf3f3 probes:

Majorana/Dirac nature of neutrinos

* Lepton-number violation An observation of Ovf33 would V
> Baryon asymmetry of immediately confirm these
universe

Absolute neutrino mass scale

Exotic BSM mechanisms Interpretations rely on " A
> Heavy neutrinos? Seesaw nuclear theory =

CI mechanisms? Sterile neutrinos?
/ J
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Decay rate
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Decay rate (s} =

3 ‘
1=1

Effective neutrino mass
Phase space

Coupling constant factor 1

1\ / (maa) |

:T1O/Vz_ = g4G"

light Me
/

Half-life
(what is measured)

Nuclear matrix
element (NME)
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Nuclear Matrix Element

Initial and final states

TN
MO = (| 0% i

Decay operator encodes specific mechanisms
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Decay Mechanism Example

Light neutrino exchange Heavy neutrino exchange
(long-range) (short-range)
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heavy ‘ me(Mmy)

Contact operator
encodes exotic W — €
high-energy physics
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NME uncertainty

Phenomenological Methods
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NME uncertainty

Ab initio Nuclear Theory
(from first-principles)
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Nuclear Matrix Element

._

Why are the NMEs so hard to calculate?
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The nucleus is complicated
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» 0 O 0O (b
S o
quarks, gluons
kS
I 940
) neutron mass -
v —
9 -
%) constituent quarks o=
é \N—
: @ =
140 -
pion mass o
baryons, mesons :;
XY ‘oo
3 8 -
~ proton separation Ep
P energy in lead o
k L ]
O ~
%) protons, neutrons r
(GJ -
4 =
P~ —_—
Q 112
vibrational
state in tin

nucleonic densities
and currents

WNPPC 2026




Phenomenological huclear models
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Fig. 1. 124Xe and !?*Te excitation spectra obtained by the nuclear shell model (NSM)
compared to experiment [74].

E.A. Coello Pérez, J. Menéndez, A. Schwenk (2019)

nucleonic densities
and currents
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Nuclear shell-model
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"The shell model, although proposed by theoreticians, really
corresponds to the experimentalist's approach. It was born from a
thorough study of the experimental data, plotting them in different

ways, and looking for interconnections." -Maria Geoppert Mayer
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Issues with phenomenological methods

Methods are inappropriately
extrapolated to where there is
no data...

Ov

» Large spread in results
» No path for understanding
uncertainty
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We can do better!

T
Renormalization group: P
Effective description of higher-scale physics §*
[ H(A) = T+ Viow (A) + Va (A) + Vi (A) 4+
:
§
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Ab initio nuclear theory Hi, = B

= chiral EFT interactions
+ a (polynomially scaling)
many-body method

Courtesy, S.R. Stroberg
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Ab initio nuclear theory H }g,n = F..

= chiral EFT interactions

+ a (polynomially scaling) }‘ ><
many-body method d b W\
. NN force @ NNN force J’

|:_X' Courtesy, S.R. Stroberg
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Ab initio nuclear theory Hi,, = Bl

= chiral EFT interactions

+ a (polynomially scaling) }‘ ><
many-body method b\

H(s) = ) He )
O(s) = ) Qe 2(s)

Continuous unitary
transformations of
Hamiltonian

Courtesy, S.R. Stroberg
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Ab initio nuclear theory Hi,, = Bl

= chiral EFT interactions

+ a (polynomially scaling) }‘ ><
many-body method d bW\

Diagonalize 7{ !

Courtesy, S.R. Stroberg
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Short-range nuclear matrix elements
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Be careful with renormalization

Wait! Don't forget
torenormalize me!

Usually we neglect this; but consistency is important for short-range operators
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Convergence in single-particle excitations
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Final short-range NMEs
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Final short-range NMEs
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Final short-range NMEs
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Connection to BSM mechanisms

—— CMS2018  —— CMS 2024 —— PMNS Unitarity
. ——— ATLAS 2022  —— CMS 2024 —— 0vBB (N3LO.n1)
Assume 3+1 model, with heavy —— CMS 2022  —— ATLAS 2025 Prompt —— 0uBB (Aco)
—— CMS2024  —— ATLAS 2025 Displaced  ——- Seesaw Line

neutrino-exchange dominating the
amplitude:
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Connection to BSM mechanisms

- (CMS 2018 — CMS 2024 ——— PMNS Unitarity
. ~—— ATLAS 2022 —— CMS 2024 —— 0vBB (N’LOn1)
Assume 3+1 model, with heavy —— CMS 2022 —— ATLAS 2025 Prompt —— 0VBB (Aco) -
neutrino-exchange dominating the el e R
amplitude:

—1 5
1| = gAGoi AT (ma))
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Ab initio progress
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Ab initio progress
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Ab initio progress
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Valence-space In-medium Similarity Renormalization Group
(VS-IMSRG)

{¢]

<'I...r|
e —
Core Valence
decoupling space
decoupling

(e
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OvBB "master formula”
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Model independence

Leading order decay rate for any BSM mechanism can be built out of 9 long-
range NMEs and 8 short-range NMEs

Mr, M&T, MET, MGy, Mon', Mp®, MRY, My, My™

Z\/IF}Sdﬁ A{CT sd? MGT sd 3 A{GT sd» MGT sd J\/I ,sd A{ ,sd Af%dshgl
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