

Enhanced Background Modelling and Signal Extraction for Electroweak Zjj Measurements with ATLAS

Friday, 13 February 2026 17:45 (15 minutes)

Electroweak production of a Z boson in association with two jets (EW Zjj) provides a clean way of probing vector boson fusion (VBF) and serves as a sensitive test of electroweak couplings within the Standard Model at high energies. Using the ATLAS detector at the Large Hadron Collider, this analysis aims to measure differential cross-sections of key observables in the dilepton channel and to investigate the distinct VBF topology characterized by two forward, high-pT jets with large invariant mass (m_{jj}) and rapidity separation (Δy_{jj}). The study uses the full Run 2 dataset at $\sqrt{s} = 13$ TeV (139 fb^{-1}) and most of the available Run 3 dataset at $\sqrt{s} = 13.6$ TeV (164 fb^{-1}), enabling independent measurements with increased sensitivity in the high- m_{jj} and high- Δy_{jj} regions where EW contributions dominate. A central challenge of the EW Zjj measurement is suppressing and precisely modelling the dominant QCD-induced Z+jets background, which mimics the signal topology but lacks colour-singlet exchange. This work develops an improved background-estimation strategy using control-region constraints in an optimized phase space, combined with a custom multi-bin likelihood fit. The analysis benefits from both datasets being reprocessed with the latest ATLAS calibration and reconstruction algorithms, providing improved object performance and enabling a more robust background-subtraction and signal-extraction procedure compared with previous EW Vjj measurements. Preliminary studies show enhanced discrimination power in the VBF-like phase space. While the datasets cannot be statistically combined due to their different centre-of-mass energies, they allow for a direct comparison of sensitivities and highlight the increased statistical and kinematic reach provided by Run 3 data. The resulting measurements are expected to provide a valuable benchmark for future Effective Field Theory (EFT) interpretations.

Your current academic level

PhD student

Your email address

ishanvyas@cmail.carleton.ca

Affiliation

Carleton University

Supervisor email

alainb@physics.carleton.ca

Supervisor name

Alain Bellerive

Primary author: VYAS, Ishan (Carleton University)

Presenter: VYAS, Ishan (Carleton University)

Session Classification: Electroweak Physics

Track Classification: Particle physics