

Probing Hadron Structure with Exclusive Pion Production Reaction at Jefferson Lab

Saturday, 14 February 2026 09:15 (15 minutes)

One of the central challenges in modern physics is to unravel hadronic structure, as the strongly coupled, non-perturbative nature of QCD at low energies makes it difficult to derive the observed properties of hadrons from their underlying quarks and gluons. The pion (π -meson) is the lightest quark system, and its properties are deeply linked to our understanding of how quarks are confined in hadronic matter. The pion form factor (F_π) is a key observable that can be accessed through the exclusive pion electro-production reaction $p(e, e'\pi^+)n$. The Pion-LT experiment was conducted to measure F_π to high Q^2 across a broad kinematic range at the Thomas Jefferson National Accelerator Facility (JLab) in Newport News, Virginia, USA. This experiment aims to measure the separated longitudinal (σ_L) and transverse (σ_T) cross-sections using the unique Rosenbluth LT-separation technique to extract F_π with high precision. In this talk, I will present preliminary results for LT-separated cross-sections at $Q^2 = 3.85$ GeV measured using the Rosenbluth technique, on behalf of the PionLT Collaboration.

Your current academic level

PhD student

Your email address

mjo147@uregina.ca

Affiliation

University of Regina

Supervisor email

huberg@uregina.ca

Supervisor name

Prof. Garth Huber

Primary author: Mr JUNAID, Muhammad (University of Regina)

Presenter: Mr JUNAID, Muhammad (University of Regina)

Session Classification: QCD

Track Classification: QCD and Hadrons