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Overview

— We finished the room... a while ago

— Paper scope:
— Requirements, design, and construction
— Shielding factor
— Preliminary residual field and gradients
— Use existing data only

— Email for comments sent after this meeting

“Review of Scientific Instruments (RSI)
publishes

, and related
mathematical analysis.”
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Requirements and Design

Central 1 m? performance requirements:

— >10° shielding factor at 0.01 Hz

— Residual fields <1 nT

— Stable to the pT level over minutes
— Internal field gradients <100 pT/m
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Requirements and Design

Central 1 m? performance requirements:

— >10° shielding factor at 0.01 Hz

— Residual fields <1 nT

— Stable to the pT level over minutes
— Internal field gradients <100 pT/m
— Spatial requirements
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Requirements and Design

Central 1 m? performance requirements: Design philosophy
— >10° shielding factor at 0.01 Hz — As many mu-metal layers as possible with the
— Residual fields <1nT maximum inter-layer spacing
— Stable to the pT level over minutes — Mirror all ports into the room
— Internal field gradients <100 pT/m — Each layer individually degaussable
— Spatial requirements — Door robust against misalignment
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Requirements and Design

Central 1 m? performance requirements: Design philosophy
— >10° shielding factor at 0.01 Hz — As many mu-metal layers as possible with the
— Residual fields <1 nT maximum inter-layer spacing
— Stable to the pT level over minutes — Mirror all ports into the room
— Internal field gradients <100 pT/m — Each layer individually degaussable
— Spatial requirements — Door robust against misalignment
Layer Thickness Material Side Length
1-outer 4mm (2 x 2.0mm) mu-metal 3500 mm
2 3mm (2 x 1.5mm) mu-metal 3000 mm
3 3mm (2 x 1.5mm) mu-metal 2600 mm
4 6—12mm (1 —2x6.0mm)  copper 2550 mm
5 2mm (2 x 1.0mm) mu-metal 2400 mm
6-inner 2.4mm (2 x 1.2mm) mu-metal 2250mm
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Construction

— Engineering and installation by Magnetic Shields
Ltd.
— Jan 2023 - Aug 2024

— Base frame

— Floor (all layers)

— Layer 4 (copper)

— Door (all layers)

— lLayers 5,3,2,1,6
— Shielding factor measured after each layer installed
— For the most part, things went smoothly

MSR prior to layer 3 installation
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Construction Issues

N

MSR “mispositioned” by ~30 cm eastward
Strongback base plate deformation

Initial poor performance

Unreliable degaussing connections at door

Electrical short between L3 and L4

Door crank cable fray

MSR prior to layer 3 installation
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Construction Issues

N
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MSR “mispositioned” by ~30 cm eastward — UCN guide path adjusted ¢

Strongback base plate deformation — extra supports installed 5
Initial poor performance
Unreliable degaussing connections at door

Electrical short between L3 and L4

Door crank cable fray

3o il /X v
MSR prior to layer 3 installation
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Construction Issues

N
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MSR “mispositioned” by ~30 cm eastward — UCN guide path adjusted ¢

Strongback base plate deformation — extra supports installed 5
Initial poor performance — retrofit layer 6
Unreliable degaussing connections at door

Electrical short between L3 and L4

Door crank cable fray

3o il /X v
MSR prior to layer 3 installation
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Construction Issues

A= S
MSR “mispositioned” by ~30 cm eastward — UCN guide path adjusted g
LS gl

Strongback base plate deformation — extra supports installed ig

Initial poor performance — retrofit layer 6

Unreliable degaussing connections at door — Better, but u
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nresolved 5

N

Electrical short between L3 and L4 5, : f*:‘
o

Door crank cable fray

3o il /X v
MSR prior to layer 3 installation
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Construction Issues

N

Door crank cable fray

MSR prior to Iayer 3 mstalla’uon
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Construction Issues
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MSR prior to Iayer 3 mstalla’uon
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Shielding Factor
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MSR prior to layer 3 installlation
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Shielding Factor
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Raw data with fits at 0.01 Hz, measured with
fluxgate
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Shielding Factor

T
—— Data

sine + sine fit
—— external signal only

0.010f

0.005

0.000

—(Bz) (uT)

— Measure with fluxgate (QuSpin for L6)
— Use least-squares fit (lock-in amplifier for L6) & _g 005} |

—0.010
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Time (s)

Raw data with fits at 0.01 Hz, measured with
fluxgate
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Shielding Factor
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Shielding Factor

108
Shielding factor at 0.01 Hz, 36 uT peak-peak, 107
cyclotron on:
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Shielding Factor
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Shielding Factor

Shielding factor at 0.01 Hz:
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Shielding Factor

Shielding factor at 0.01 Hz:
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Degaussing Coils
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Degaussing Coils

Layer Primary Coil Set  Secondary Coil Set ﬂ\}

Edge “L” (reconfigurable)

—

o
2 Edge “L”
3 Edge “L”
5 Distributed “L” Edge toroidal x3
6 Distributed toroidal x2 Edge toroidal x3
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Degaussing Procedure

At 1 Hz, maximum amplitude, timing structure for
each layer:

— Ramp to max amp: 5s
— Hold max amp: 10s _1ot
— Linear amp ramp down: 60s
— Hold zero amplitude: 2s

Driving Current (A)
o

—— Pickup 1
—— Pickup 2 |
—— Pickup 3

0.2

0.0

Pickup Voltage (V)

0 5 10 15 20 25 30
Time (s)

Example driving sequence (different time
structure)
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Degaussing Procedure

At 1 Hz, maximum amplitude, timing structure for
each layer:

— Ramp to max amp: 5s
— Hold max amp: 10s —10}
— Linear amp ramp down: 60s
— Hold zero amplitude: 2s

Driving Current (A)
o

— Pickup 1
—— Pickup 2 |
—— Pickup 3

0.2

s
Layer pattern: % *or
— Outwards: L6, L5, L3, L2, L1 g .,

— Inwards: L2, L3, L5 . . . . . . .
— Connect Isolation transformer, switch to 3 Hz, 0 > Y e * *
120 s ramp down, half max amplitude o ) )
16 Example driving sequence (different time

structure)
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Residual Fields

— Used QuSpin taped to a stick, flipping at each
point

— Above requirement of 1 nT, but not by much

— With cyclotron on

X =-50 cm x=0cm

x =50 cm

40 BEEEN -1.48(2) -1.56(2){ EUEEEIN -1.60(2)

ECETPIN -1.50(2) -1.53(2) [RUNATEIN -1.53(2)

-40 BEIIPN -1.50(2) -1.59(1) -1.56(2)

-1.59(2)

-1.53(2)

-1.60(2)

RAZIvIN -1.60(2)

-1.49(2)

BRI -1.61(2)

-1.57(2)

-1.59(2)

-1.54(1)

-0.14(2)  0.48(2; -0.73(2) 0.20(1)

0.15(2) | 0.72(1) ) -0.57(2) 0.42(1)

Vertical [z] Position (cm)

0.72(1)  0.80(1) - 0.43(1)

40 40 0
North/South [y] Position (cm)

0.58(2)

0.80(2)

0.87(1)

40

-0.67(3) 0.55(2)

-0.94(2) | -0.02(1)

-0.28(2)

-40 0

0.61(3)

-0.11(2)

-0.12(1)

40

B, (nT)

Residual fields measurable through the west
wall, with cyclotron field on and simple
degaussing procedure

10/12



Residual Fields

Outer Mapper Tube

Inner Mapper Tube

— Used QuSpin taped to a stick, flipping at each
point

— Above requirement of 1 nT, but not by much

— With cyclotron on

— We have a better stick now, should repeat for
future publication

— Repeat with cyclotron off

QZFM Flipper

Nose Cone

Alignment Sleeve

New mapper stick with 2 axis rotation and
fixed positions / angles
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Field Gradient

Calculated only Gy, for room center position:
— Above requirement of 0.1nT/m

— Missing two points (incalculable from what we
have)

— Higher order gradients, at more positions
possible with better maps

-0.74(2) 1.72(3) -0.28(2)

Go.m at room center in nT/m.
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& TRIUMF

Most metrics don’t meet requirement:
— Shielding factor at 0.01 Hz, 2 uT too low:
4 % 10* < 10°
— Residual field max a little too high:
1.6nT > 1nT

— Gradient max at room center much too high:

1.7nT > 0.1nT

Residual fields and gradients can likely be
improved upon.

Draft to be sent out soon
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