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4D tracking - concept

 Collection of hits for multiple tracks in dense environment
 Hard to reconstruct tracks
 But if particles have different initial position or delayed in 

time
 We can exploit the time of the hits

 Easier to reconstruct single tracks
 ~ps ~mm at c, 1100ps is the needed time resolution 

for usual collider beam spot size

?

?

 Efficient tracking in dense environment
 Pile-up suppression
 Long Lived Particle detection
 Appearing/Disappearing tracklets

identification
 ToF-based particle identification is possible
 Jet flavor tagging enhancement
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Time precision sensors
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 Which technology has sufficient time resolution?
 SiPM (Silicon photomultiplier) 
 But very little radiation hardness and low granularity

 HV CMOS detector
 Embedded amplification in the design, down to ~50 ps of time 

resolution 
 3D sensors
 Perpendicular charge collection, no gain, ~20-30ps of time 

resolution
 Low Gain Avalanche Detectors (LGADs) 
 Intrinsic gain, thin bulk, ~ 20-30ps of time resolution



HV-CMOS
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HV-CMOS timing performance
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 Internal amplification allows for fast signal shaping
 Monolithic chip: no need for bump bonding process
 Lot of RnD in the past year to get to a fully depleted sensor with 100% 

efficiency
 Promising in terms of timing! But keep an eye on power consumption

 HV-MAPS (Monolithic Active Pixel Sensor) MuPix7
 https://arxiv.org/pdf/1803.01581.pdf
 https://arxiv.org/pdf/1603.08751.pdf
 Time resolution of MuPix7 ~10-14ns, ~40um spatial resolution

 HR-CMOS CLICTD (for CLIC experiment)
 https://indico.cern.ch/event/813597/contributions/3730879/attachments/1989317/3315977/CLICTD-TREDI2020-Vienna-18Feb2020.pdf

 ~6ns time resolution, ~6um spatial resolution

https://arxiv.org/pdf/1803.01581.pdf
https://arxiv.org/pdf/1603.08751.pdf
https://indico.cern.ch/event/813597/contributions/3730879/attachments/1989317/3315977/CLICTD-TREDI2020-Vienna-18Feb2020.pdf


HV-CMOS timing performance
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 DMAPS CACTUS (future colliders)
 https://authors.library.caltech.edu/103788/1/2003.04102.pdf
 150nm process, 1mm pixel pitch
 Power 145mW/cm^2
 ~180-60ps of time resolution depending on thickness (100-200um)

 SiGe BiCMOS SG13G2 (for ToF PET)
 https://iopscience.iop.org/article/10.1088/1748-0221/14/11/P11008/pdf
 https://arxiv.org/pdf/2005.14161.pdf

 ~25um thickness, 65um pixel size (very low pixel capacitance)
 Time resolution depends on power consumption 12375uW per channel
 Down to ~50ps time resolution

 Few examples of good HV-CMOS for timing
 In general time resolution of the order of 50ps-10ns
 Good in terms of spatial resolution and cost

 Issue of power density at low pitch, eg: 400uW/ch would give 
~300mW/cm^2 at ~400um pitch 
 HGTD (1.3mm pitch, timing) power limit is 300mW/cm^2, ITk (50um 

pitch, standard tracking) is 800mW/cm^2

https://authors.library.caltech.edu/103788/1/2003.04102.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/14/11/P11008/pdf
https://arxiv.org/pdf/2005.14161.pdf


3D detectors
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3D sensors timing performance
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 Charge collection is perpendicular to particle incidence
 No internal gain or amplification (low collected charge)
 Pixel pitch is proportional to charge collection time (crucial for time resolution)
 Charge sharing if MiP is not ~perpendicular
 Might be a good candidate technology for vertexing with timing

 Small cell 3D sensor
 https://arxiv.org/pdf/1901.02538.pdf
 50um pitch size, ~50ps time resolution
 Issue: Electric field goes down as 1/r

 TimeSPOT: Trench 3D sensors 
 Large rectangular trenches as electrodes
 Optimized electrodes to have constant field and minimize charge collection time
 150um bulk but charge is collected in 50um
 Time resolution down to 20ps!
 https://indico.cern.ch/event/895924/contributions/3993250/attachments/2111174/3565760/Vertex2020ALai_20ps_re.pdf
 https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09029/pdf

https://arxiv.org/pdf/1901.02538.pdf
https://indico.cern.ch/event/895924/contributions/3993250/attachments/2111174/3565760/Vertex2020ALai_20ps_re.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09029/pdf


LGADs
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Low Gain Avalanche Detectors
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 LGAD: silicon detector with a thin (<5μm) and highly doped 
(~1016 P++) multiplication layer
 High electric field in the multiplication layer
 Electron multiplication but not hole multiplication (not in avalanche 

mode, controlled gain)
 LGADs have intrinsic modest internal gain (10-50)

 Gain = 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃

(collected charge of LGAD vs same size PiN)
 Better signal to noise ratio, sharp rise edge

 Better signal to noise ratio and thin detectors means improved 
timing resolution
 Time resolution < 30 ps

 Several vendors of experimental LGADs
 CNM (Spain), HPK (Japan), FBK (Italy), BNL (USA), NDL/IME 

(China)



ATLAS and CMS timing layers
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 First application of LGADs in HEP experiments at HL-LHC 
(starting ~2026)
 Timing layers in the end-cap (forward) region to mitigate pile-up

 ATLAS High Granularity Timing Detector (HGTD)
 https://cds.cern.ch/record/2719855

 LGAD requirements: 
 Radiation hardness to 2.5E15Neq, 4MGy. 
 Time resolution <50ps per hit, collected charge ~10fC. 
 Power (sensor-only) <100mW/cm^2

 CMS EndcapTiming Layer (ETL)
 https://cds.cern.ch/record/2667167
 CMS will also feature a timing layer in the barrel but with different 

technology (LYSO bars + SiPM readout)

https://cds.cern.ch/record/2719855
https://cds.cern.ch/record/2667167


Time resolution
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Sensor time resolution main terms

 Time walk: 
 Minimized by correcting the time of arrival 

using pulse width or pulse height (e.g. use 50% 
of the pulse as ToF)

 Jitter: from electronics
 Proportional to �1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 Reduced by increasing S/N ratio with gain

 Landau term: proportional to thickness
 Reduced for thinner sensors
 Dominant parameter at high gain

 TDC term: from digitization clock



LGAD sensors 50 um vs 30 um
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 High gain  very low jitter 
contribution to the time 
resolution

 Time resolution is ultimately 
driven by Landau component
 Depends on sensor thickness

 30ps for 50um sensors
 20ps for 30um sensors
 15ps possible with 20um sensors

50um

30um



LGAD and radiation damage
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 LGADs while operating in high energy physics experiments will sustain 
radiation damage 
 Both in terms of fluence and ionization dose

 Change in performance caused by reduced doping concentration in the 
gain layer by acceptor removal mechanism
 Some details: https://doi.org/10.1016/j.nima.2018.11.121

Performance effects of radiation damage (E.g. on 50um sensor)
 Reduction of gain and collected charge

 Charge collected up to 30fC (Gain ~50) before irradiation to 1fC (gain 2-3) 
after a fluence of 6E15 Neq/cm2 

 (equivalent 1 MeV neutrons on cm2)
 Increased time resolution

 Time res. of 25ps to 60ps after a fluence of 6E15 Neq/cm2

 Partly the performance can be recovered by increasing the bias Voltage 
applied to the diode (~200V  ~700V)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://doi.org/10.1016/j.nima.2018.11.121
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Radiation hard LGAD design
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 Two ways to increase the radiation hardness of LGADs

 Addition of Carbon
 FBK (Fondazione Bruno Kessler) sensors
 Carbon is electrically inactive (no effect pre-irradiation), 

catches interstitials instead of Boron, reduces acceptor 
removal after irradiation

 Deeper gain layer
 HPK (Hamamatsu Photonics) sensors
 High field for larger volume
 Allows for better recovery of the gain from increased bias 

voltage after radiation damage

 Resources
 https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10003

 https://www.sciencedirect.com/science/article/pii/S0168900218317741

 https://doi.org/10.1088/1748-0221/15/04/T04008

 https://doi.org/10.1016/j.nima.2018.08.040

With Carbon

Without Carbon

Deeper gain layer (triangles)
Less deep gain layer (circles)
(same color, same fluence)

https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10003
https://www.sciencedirect.com/science/article/pii/S0168900218317741
https://doi.org/10.1088/1748-0221/15/04/T04008
https://doi.org/10.1016/j.nima.2018.08.040


ROC (Read Out Chip) challenge
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 Readout electronics to maintain the time resolution of the sensor
 Needs fast amplifier to follow the fast LGAD rise-time

 Simple ToA (Time of Arrival) method for timing not sufficient
 Prone to time walk uncertainty

 Time needs to be corrected in some way:
 Using ToT correction (Time over Threshold) which measures the length of the 

pulse, current method used by ATLAS and CMS electronics
 Using a variable threshold (eg: at 50% of the Pmax)  (CFD) Constant Fraction 

Discriminator
 Use zero-crossing of the derivative
 Etc…?

 Current electronics in development require high power and a high collected 
charge to work properly
 Also LGAD sensors after irradiation tend to need high current and voltage
 Especially when the granularity is lower than ~1mm
 Power consumption is and will be an issue for timing layers

ATLAS readout chip (ALTIROC) ToT timing 
correction to ToA for time resolution evaluation



LGAD granularity
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LGAD arrays structure

P

P+

N++
P++

Very high field area, induces early breakdown

Structure to avoid high field line concentration at the edges
Junction Termination Extension (JTE)
Separation between the pads of an array ~50-100 um

 Protection structures limit the 
current granularity of LGADs

 ~100um pixel size would mean 
~50% active area

 But intensive R&D is ongoing to 
overcome this limitation



Higher granularity LGADs
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 Reverse position of gain layer  iLGAD

 Trench insulation of pads TI-LGAD

 Deep junction  DJ-LGAD (Patent Application SC 
2019-978 (UCSC))



AC-LGAD detectors
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 AC coupled LGAD (UCSC - US patent N. 9,613,993 B2, granted Apr. 4, 2017)

 Goal: finer segmentation and easier implantation process
 Continuous sheets of multiplication layer and N+ layer 
 N+ layer is grounded through side connections 
 Readout pads are AC-coupled (Insulator layer between N+ and pads)



AC event reconstruction and performance
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 AC-LGAD has intrinsic charge sharing between pixels
 Charge sharing might be a great feature for low density 

tracking environment
 Using information from multiple pixels for hit reconstruction
 With a sparse pixelation of 300um a <10um hit 

precision can be achieved!
 Time resolution can benefit too, using the time of several channels 

the Jitter component of the time resolution can be reduced
 Extremely useful for both power dissipation and cabling 
 Still in a early R&D phase, proposed technology for future EIC 

experiment at BNL

 Resources
 https://indico.physics.lbl.gov/event/1262/
 https://indico.cern.ch/event/918298/contributions/3880516/
 https://arxiv.org/abs/2006.01999
 https://indico.cern.ch/event/895924/contributions/3968867/attachments/2119055/3565898/Vertex2020_KEKLGAD_20201008_upload.pdf

https://indico.physics.lbl.gov/event/1262/
https://indico.cern.ch/event/918298/contributions/3880516/
https://arxiv.org/abs/2006.01999
https://indico.cern.ch/event/895924/contributions/3968867/attachments/2119055/3565898/Vertex2020_KEKLGAD_20201008_upload.pdf


Thin sensors future improvements
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Thin LGAD sensors future uses
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 First results with a 20um prototype LGAD
 With issues, gain layer has to be optimized
 However shows possible improvements down to 15ps of time resolution

 Compared with 50um sensors (30ps reach) and 30um sensors (20ps reach)
 https://arxiv.org/abs/2006.04241

 Very thin sensors can also be candidates for extreme radiation environment
 Issue: after substantial radiation damage thick detectors requires 1000s of V 

for depletion (Even though there is evidence of Charge trapping saturation)
 But a 50um sensor at 1E17Neq is fully depleted at 500V
 Can be operated in extreme radiation environment
 https://doi.org/10.1016/j.nima.2020.164383
 https://agenda.hep.wisc.edu/event/1391/session/12/contribution/60
 https://indico.desy.de/indico/event/24272/session/0/contribution/13/material/slides/0.pdf

G30 sensor

30um sensor, 20ps reach

20um sensor, 15ps reach

https://arxiv.org/abs/2006.04241
https://doi.org/10.1016/j.nima.2020.164383
https://agenda.hep.wisc.edu/event/1391/session/12/contribution/60
https://indico.desy.de/indico/event/24272/session/0/contribution/13/material/slides/0.pdf


LGADs with X-ray - SSRL
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 LGAD tested at SLAC SSRL 
 Stanford Synchrotron Radiation Light source

 X-rays of energy range [6, 16] KeV
 80, 60, 50, 35 um detectors

 Very good time resolution ~100ps
 Fair energy resolution ~10%
 Full collection time ~1ns correspond to GHz repetition rate
 Definite pulses even with a 2ns beam separation

 No influence on shape from close-by pulses
 https://doi.org/10.1016/j.nima.2019.01.050

 Application other than HEP are being pursued for LGADs, such 
as fast beam monitoring
 Challenge: reach 10 GHz of repetition rate

2ns

https://doi.org/10.1016/j.nima.2019.01.050


Conclusions
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Fast sensors current performance
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 HV-CMOS, Monolithic chip with internal amplification
 Good time resolution (~50ps) and avoids bump bonding procedure
 Low production cost
 Power consumption might be too high

 3D sensors, No amplification, perpendicular charge collection
 Trench 3D sensors can reach ~20ps or time resolution
 Pitch size proportional to charge collection time
 Good radiation hardness, but low collected charge and charge sharing
 Candidates for vertexing with timing

 LGADs, Internal gain, thin sensors of 50-30um
 Can reach 20-30ps of time resolution and a gain of ~50
 Reasonable performance up to a few 1E15Neq
 Granularity limited to ~mm scale (for now)



LGAD future development and applications
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 In the future 15ps per hit is foreseeable with very thin LGADs
 Low granularity (10um) can be achieved with AC-LGADs

 In a sparse environment low granularity (10um) with larger pitch (300um) is achievable
 Few mentions in the last years of Monolithic LGADs (lower cost and power)

 https://indico.fnal.gov/event/44925/contributions/194082/attachments/132985/163760/Future_silicon_detectors_Aug13_2020.pdf
 ttps://indico.cern.ch/event/669866/contributions/3234993/

 HL-LHC confirmed both ATLAS and CMS LGAD timing layers, ~2026
 Several Electron Ion Collider (BNL) LoI mention LGADs and AC-LGADs as possible 

technology for 4D tracking
 Application other than HEP are being pursued for LGADs, such as fast beam 

monitoring

 LGADs are also mentioned in several snowmass LoI
 A new “LGAD consortium” was formed across US universities and national 

laboratories to tackle LGAD R&D in the next years

2ns

https://indico.fnal.gov/event/44925/contributions/194082/attachments/132985/163760/Future_silicon_detectors_Aug13_2020.pdf
https://indico.cern.ch/event/669866/contributions/3234993/
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Backup
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Irradiation campaigns on LGADs
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 Irradiation campaign on LGADs
 Sensors were irradiated at 

 JSI (Lubiana) with ~1 MeV neutrons
 PS-IRRAD (CERN) with 23 GeV protons
 Los Alamos (US) with 800 MeV protons
 CYRIC (KEK, Japan) with 70 MeV protons
 X-rays at IHEP (China)

 Neutron irradiation for fluence
 From 1E13 Neq/cm2 1E16 Neq/cm2

 Proton irradiation for fluence and ionizing dose
 Up to 4MGy

 X-ray irradiation for ionizing dose



Acceptor removal mechanism
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 Most widely accepted radiation damage explanation 
for LGADs is acceptor removal
 M. Ferrero et al. arXiv:1802.01745, G. Kramberger et al. JINST 10 (2015) P07006

 Radiation damage for LGADs can be parameterized
 𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐
 𝜙𝜙 is radiation fluence in Neq/cm2

 Acceptor creation: 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙
 By creation of deep traps

 Initial acceptor removal mechanism: 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐
 Ionizing radiation produces interstitial Si atoms 
 Interstitials inactivate the doping elements (Boron) via 

kick-out reactions that produce ion-acceptor complexes

Multiplication layer

Bulk

Y. Zhao et al. 10.1016/j.nima.2018.08.040

Acceptor removal

Acceptor creation



Sensor testing – Sr90 telescope

10/12/2018Dr. Simone M. Mazza - University of California Santa Cruz32

 Dynamic laboratory testing
 Using MiP electrons Sr90 β-source
 Signal shape, noise, collected charge, gain, time 

resolution

 β-telescope
 Sensors mounted on analog readout board designed at 

UCSC (Ned Spencer, Max Wilder, Zach Galloway) with fast amplifier 
(22 ohm input impedance, bandwidth > 1GHz)

 Trigger sensor (fast timing trigger) on the back
 DUT (Device Under Test) is read in coincidence

 Setup in climate chamber to run cold and dry
 20C/-20C/-30C

 (however no position information)

LGAD

S.M. Mazza et al. arXiv:1804.05449



Sensor testing – Sr90 telescope
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 Signal to Noise
 Pulse maximum over noise

 10-90% rise time
 Time resolution
 Spread of time difference with trigger sensors and DUT

 Trigger sensor time resolution measured by mounting two identical 
sensors

 Collected charge
 Pulse area (minus undershoot) divided by trans impedance

 Gain
 Collected charge divided by collected charge in same thickness PiN

 Collected charge in PiN measured with the same β-telescope

S.M. Mazza et al. arXiv:1804.05449

Δ𝑡𝑡
Measured noise



Sensor testing – IV/CV

10/12/2018Dr. Simone M. Mazza - University of California Santa Cruz34

 Capacitance over voltage (CV)
 Study doping concentration profile and full 

depletion of the sensor 
 Study of the “foot” for LGADs on 1/C2

 1/C2 is flat until depletion of multiplication layer 
because of the high doping concentration

 Proportional to gain layer active concentration
 Bulk doping concentration proportional to the 

derivative of 1/C2 before depletion
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Low Gain Avalanche Detectors
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 Collected charge from MiP is proportional to thickness of a 
silicon detector

 Thanks to gain LGADs can go thinner than normal silicon 
detectors
 Down to 50um and 20um!

 Thinner detectors have shorter rise time and less Landau 
fluctuations

 Gain from multiplication layer
 Better signal to noise ratio

 Better signal to noise ratio and thin detectors means 
improved timing resolution
 Time resolution < 30 ps

Thin sensors
have shorter
rise-time

Entire pulse is ~1ns

Signal components
in normal silicon
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