K. ZUREK

Leveraging the many faces (and phases) of matter

QUANTUM MATERIALS & DARK MATTER DETECTION

NEW IDEAS IN DARK MATTER THEORY

Old paradigm: weak scale dark matter (with relic density)

fixed by freeze-out)

$$n\langle \sigma v \rangle = H(T_{fo})$$

 $\implies \langle \sigma v \rangle \simeq \frac{1}{(20 \text{ TeV})^2} \simeq \frac{g_{wk}^4}{4\pi (2 \text{ TeV})^2}$

Kolb and Turner

DIRECT DETECTION GOLD STANDARD

 Nuclear recoil experiments; basis of enormous progress in direct detection

 $v\sim 300~{
m km/s}\sim 10^{-3}c \implies E_D\sim 100~{
m keV}$ for 50 GeV target

WEAK SCALE PARADIGM: UNDER ASSAULT

Z-boson interacting dark matter: ruled out

Higgs interacting dark matter: active target

DIRECT DETECTION GOLD STANDARD

TOWARDS LIGHT DARK MATTER

Dark Matter May Reside in a Hidden Sector

e.g. a stable dark pion no weak force

$$\pi_v^+ \pi_v^- \to \pi_v^0 \pi_v^0$$
$$\pi_v^0 \to b\bar{b}, \ \gamma\gamma$$

Hidden Sector / Valley Paradigm

NUCLEAR RECOILS

Kinematic penalty when DM mass drops below nucleus mass

$$E_D = \frac{q^2}{2m_N} \qquad q_{\text{max}} = 2m_X v$$

$$E_D \gtrsim \text{eV} \leftrightarrow m_X = 300 \text{ MeV}$$

even though
$$E_{\rm kin} \gtrsim 300~{\rm eV}$$

NEXT UP: ELECTRON

More bang for the buck if DM lighter than 1 GeV

$$E_D = \frac{q^2}{2m_e} \qquad q_{\text{max}} = 2m_X v$$

 Allows to extract all of DM kinetic energy for DM MeV and heavier

$$E_D \gtrsim \text{eV} \leftrightarrow m_X = 1 \text{ MeV}$$

ELECTRONS IN MATERIALS

In insulators, like xenon

Ionize electron

Gap = DM Kinetic Energy

In semi-conductors, like Ge, Si

Excite electron to conduction band

Sorensen, Essig, Manalaysay, Mardon, Volansky 1206.2644

Essig et al 1509.01598

QUANTUM DEVICE R&D

- In addition to suitable target (quantum phases of matter), need quantum devices capable of measuring small energy deposits
- Superconducting devices that measure single quanta
- Single infrared or microwave photon detectors

Transition Edge Sensor calorimeter

Microwave Kinetic Inductance Device

DEVELOPMENT OF NEW TECHNOLOGIES

←

QCD axion, "ultralight frontier"

QCD axion, "ultralight frontier"

~keV energy resolution

E.G. SUPERCONDUCTORS

- Free electrons succumb to collective dynamics
- lack Typical gap $\Delta \simeq 0.3~{
 m meV}$
- Scattering and absorption modes
- Take advantage of collective modes! e.g. phonons to absorb DM particles

SCATTERING AND ABSORPTION REACH

Scattering

Light mediator 10^{-33} 10^{-34} 10^{-35} 10^{-36} 10^{-37} $\tilde{\sigma}_{\mathrm{DD}} \, [\mathrm{cm}^2]$ 10^{-38} 10^{-39} 10^{-40} SC 10 meV 10^{-41} 10^{-42} 10^{-43} 10^{-4} 10^{-5} 10^{-3} 10^{-2} 10^{-6} 0.1 $m_X[GeV]$

Absorption

Hochberg, Pyle, Zhao, KZ 1512.04533

Hochberg, Lin, KZ 1608.01994

DIRAC MATERIALS 1708.08929

WEYL OR DIRAC SEMI-METALS ~ 3D GRAPHENE

- Materials can be "quantum engineered"
- Correlation between electrons gives rise to a unique band structure
- Hamiltonian looks like free QED near Dirac point
- In QED, gauge invariance protects photon from obtaining a mass

WEYL OR DIRAC SEMI-METALS ~ 3D GRAPHENE

 Optical response behaves exactly as electric charge renormalization in QED

$$\mathcal{L} \supset \varepsilon e \frac{q^2}{q^2 - \Pi_{T,L}} \tilde{A'}_{\mu}^{T,L} J_{\text{EM}}^{\mu}$$

- Weaker Optical Response
- Stronger Sensitivity to Dark Photon

Yonit Hochberg,^{1,2,*} Yonatan Kahn,^{3,†} Mariangela Lisanti,^{3,‡} Kathryn M. Zurek,^{4,5,§} Adolfo Grushin,^{6,7,¶} Roni Ilan,^{8,**} Zhenfei Liu,⁹ Sinead Griffin,⁹ Sophie Weber,⁹ and Jeffrey Neaton⁹

HELIUM

- Superfluids have been explored as a good light dark matter detector via nuclear recoils, McKinsey group 1605.00694
- To detect lighter DM, couple to phonon modes.
- Viable? At first glance no

$$E_D \sim v_X q$$
 vs $c_s \ll v_X$ $E_D \sim c_s q$

Next glance -- yes!

MULTI-EXCITATIONS

 emit back-to-back excitations to bleed off energy while conserving momentum

COMPLEMENTARITY

Cosmic Visions Whitepaper

ROAD FORWARD

 Large part depends on better energy resolution sensors (TESs or KIDs); TESs or KIDs are portable to multiple

targets

Semiconductors SuperCDMS

Current energy resolution: ~300 eV

Goal: ~1 eV

Superconductors

Goal: ~1 meV

Superfluid Helium

Goal: ~1 meV

QUASIPARTICLE EXCITATION CONCENTRATION

Design by M. Pyle

Fundamental limitation: energy resolution of heat sensor (TES)

Current sensitivity:

TES	T_c [mK]	Volume $[\mu m \times \mu m \times nm]$	Bias Power [W]	Power Noise $\sqrt{S_{\mathrm{p,tot}}(0)} \; [\mathrm{W}/\sqrt{\mathrm{Hz}}]$	$ au_{ ext{eff}} \ [\mu ext{s}]$	$\sigma_{ m E}^{ m measured}$ $[{ m meV}]$	$\sigma_{ m E}^{ m scale} \ [{ m meV}]$
W [47]	125	$25 \times 25 \times 35$	2.1×10^{-13}	5×10^{-18}	15	120	1.1
Ti [48]	50	$6 \times 0.4 \times 56$	5.8×10^{-17}	2.97×10^{-20}		47	22
	100		2.6×10^{-15}	4.2×10^{-19}		47	7.8
MoCu [49]	110.6	$100 \times 100 \times 200$	8.9×10^{-15}	4.2×10^{-19}	12700	295.4	0.3

ROAD FORWARD

- New ideas for dark matter detection!
- Moving beyond nuclear recoils into phases of matter crucial to access broader areas of DM parameter space
- Target diversity essential. graphene, superconductors, semiconductors, helium, Dirac materials,
- Leverage progress is materials and condensed matter physics

ROAD FORWARD

- Realizing experimental program is 5-10+ years into future
- Explosion in Community Interest, US Cosmic Visions
 Whitepaper, University of Maryland, March 2017
- Nine orders of magnitude increased sensitivity in mass
- Long view necessary!