## Advanced and Novel Acceleration Techniques

## Arnd Specka CNRS/IN2P3 – Ecole Polytechnique (France)



#### evolution of beam energy of colliders e+/e- et p/p



graph courtesy by A. Mosnier

#### «beam» energies in laser plasma acc. experiments



LPA gradients 10 to 100 times higher than conventional RF LINACs

$$W = q \times E \times L$$

## Advanced and Novel Acceleration Techniques

#### acceleration of electrons (and positrons)

| drive beam  | plasma medium                                                                         | accelerating structure                                                  |
|-------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| e+/e-beam   | plasma wakefield<br>acceleration (PWFA <sup>*</sup> )<br>*) PWFA: historical misnomer | dielectric structured<br>wakefield acceleration<br>( <del>D</del> SWFA) |
| proton beam | seeded self-modulation<br>(SSM)                                                       |                                                                         |
| laser beam  | laser wakefield<br>acceleration (LWFA)                                                | dielectric laser<br>acceleration (DLA)                                  |

#### Iaser plasma acceleration of protons (and ions)

## Advanced and Novel Acceleration Techniques

#### Issue of the second second

| drive beam  | plasma medium                                                                         | accelerating structure                      |
|-------------|---------------------------------------------------------------------------------------|---------------------------------------------|
| e+/e-beam   | plasma wakefield<br>acceleration (PWFA <sup>*</sup> )<br>*) PWFA: historical misnomer | structured wakefield<br>acceleration (SWFA) |
| proton beam | <b>seeded self-modulation</b><br>(SSM)                                                |                                             |
| laser beam  | laser wakefield<br>acceleration (LWFA)                                                | dielectric laser<br>acceleration (DLA)      |

#### Iaser plasma acceleration of protons (and ions)

## Plasma wave driven by strong electric fields

#### laser field (vector potential a)

particle beam field





1-D linear theory: plasma wave = forced electron density oscillation

#### 1-D linear approximation $a^2 \ll 1$



1-D linear approximation  $n_b/n_0 \ll 1$ 



07-XI-2017

#### Plasma waves can be excited by ANY drive beams

#### Short electron or positron bunches (PWFA)



#### proton bunch: short bunch or seeded self- modulation (SSM)



## AWAKE experiment @ CERN: seeded self-modulation



07-XI-2017

ICFA Seminar '17 (Ottawa) – Advanced and Novel Acceleration Techniques – Arnd Specka

## AWAKE observes micro-bunch train after SSM



### Physics principle of laser plasma wave acceleration

Iltra-short pulse, high peak-power laser : >50TW, 20-100fs, >1 J, focused in a gas, e.g. hydrogen



#### Iaser wakefield acceleration of electrons (LWFA)

- gaseous target (under-dense plasma) : n<sub>e</sub>~10<sup>16</sup> 10<sup>19</sup> cm<sup>-3</sup>
- Field effect ionization at the front of the laser pulse
- > charge separation -> plasma wave:  $\lambda_{P} \sim 300 \mu m 10 \mu m$
- $\geq$  phase velocity v<sub>PH</sub> (plasma wave) = v<sub>G</sub> (group velocity laser) => relativistic wave

## Proliferation of UHI laser Peta-Watt class lasers



07-XI-2017

## Physics limitations of a single LWFA stage

#### Diffraction (Rayleigh range)

remedy: (self-focussing), laser guiding: channel, capillary, discharge



## Blow-out regime LWFA : selfinjection and acceleration

Iaser: 600TW 25fs (CILEX/Apollon 1PW startup)

□ comoving window over 18mm

bubble shrinks, then expands

A. Beck et al., NIM A 740 (2014).

energy spectrum of self-injected electrons



simulation shows stable acceleration even without guiding
 peaked energy spectrum around 3GeV after ~20mm

07-XI-2017

#### **Current Status of LWFA Electron Bunch Properties**

| Property                             | State of Art*                                                                                | Reference                                                                                                              | lide courtesy by Mike DOWNE            |  |
|--------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Energy                               | <b>2 GeV</b> (± 5%, 0.1 nC)<br><b>3 GeV</b> (±15%, ~0.05 nC)<br><b>4 GeV</b> (±5%, 0.006 nC) | Wang (2013) - Texas<br>Kim (2013) – GIST<br>Leemans (2014) - LBNL                                                      | xas<br>ST<br>LBNL from E ≈ 0           |  |
| Energy Spread                        | <b>1%</b> (@ .01 nC, 0.2 GeV)<br><b>5-10%</b>                                                | Rechatin (2009a) – LOA<br>more typical, many results                                                                   | 0.1% desirable for<br>FELs & colliders |  |
| Normalized Trans-<br>verse emittance | ~ 0.1 π mm-mrad                                                                              | Geddes (2008) - LBNL<br>Brunetti (2010) - Strathclyde<br>Plateau (2012) - LBNL                                         | Measurements at resolution limit       |  |
| <b>Bunch Duration</b>                | ~ few fs                                                                                     | Kaluza (2010) – Jena (Faraday)<br>Lundh (2011) – LOA; Heigoldt<br>(2015) – MPQ/Oxford (OTR)<br>Zhang (2016) – Tsinghua | Measurements at resolution limit       |  |
| Charge                               | <b>0.02 nC</b> @ 0.19 GeV ±5%<br><b>0.5 nC</b> @ 0.25 GeV ±14%                               | Rechatin (2009b) – LOABeam-loading achieCouperus (2017) - HZDRFOM: Q/ΔΕ ?                                              |                                        |  |
| Repetition Rate &<br>Repeatability   | ~ <b>1 Hz</b> @ > 1 GeV<br><b>1 kHz</b> @ ~ 1 MeV                                            | Leemans (2014) - LBNL<br>He – UMIch ('15); Salehi ('17) –<br>UMd; Guénot ('17) LOA                                     | Limited by lasers & gas targets        |  |

#### \* No one achieves all of these simultaneously!

• Brunetti, PRL **105**, 215007 ('10)

- Couperus, submitted ('1
- Geddes, PRL 100, 2150
- He, Nat. Comms 6, 715

Advanced and Novel Accelerators for High Energy Physics Roadmap Workshop 2017 April 25-28, 2017 at CERN

Rechatin, PRL 103, 194804 ('09b)
 Opt. Lettt. 42, 215 ('17)
 Nat. Comms 4, 1988 (2013)
 PRST-AB 19, 062802 (2016)

#### strategy roadmaps



| Beam Driven Plasma R&D 10 Year Roadmap                                                                          |                             |                      |               |                   |                  |        |  |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|---------------|-------------------|------------------|--------|--|--|
| 2016                                                                                                            | 2018                        | 2020                 | 2022          | 2024              | 1 20             | 26     |  |  |
| PWFA-LC Concept Development and Parameter Studies                                                               |                             |                      |               |                   |                  |        |  |  |
| Beam Dynamics and Tolerance Studies                                                                             |                             |                      |               |                   |                  |        |  |  |
| 10 GeV Electron Stage                                                                                           |                             |                      |               |                   |                  |        |  |  |
| FACET                                                                                                           | FACET-II Phase 1: Electrons |                      |               |                   |                  |        |  |  |
| Operating with high beam loading: Gradient > 1GeV/m, Efficiency > 10%                                           |                             |                      |               |                   |                  |        |  |  |
| Present                                                                                                         |                             | Goals                |               |                   |                  |        |  |  |
| 9 GeV                                                                                                           |                             | 10 GeV               |               |                   |                  |        |  |  |
| Q ~ 50 pC                                                                                                       |                             |                      |               | Q~1               |                  |        |  |  |
| ε ~ 100μm                                                                                                       |                             | ε ~ 10μm             |               |                   |                  | tor    |  |  |
| ΔE/E ~ 4%                                                                                                       |                             |                      | C             |                   |                  |        |  |  |
|                                                                                                                 | Stagin                      |                      | 121           |                   | -~1%             |        |  |  |
|                                                                                                                 |                             |                      |               | Transt            | ormer Ratio      |        |  |  |
| с                                                                                                               | DNN                         |                      |               | Present           | Goals            |        |  |  |
| Beam q                                                                                                          |                             | .on and extra        | iction G      | Baussian Beams    | Shaped Pro       | ofiles |  |  |
| Plasn                                                                                                           | ored er                     | ntrance & exit profi | le            | T ~1              | T > 1            |        |  |  |
|                                                                                                                 | PWFA Applicat               | tion(s): Identifi    | cation, CD    | R, TDR, Oper      | ation            |        |  |  |
|                                                                                                                 |                             | Positron A           | cceleratior   | า                 |                  |        |  |  |
| FACET                                                                                                           |                             |                      | FACE          | T-II Phase 2: P   | ositrons         |        |  |  |
|                                                                                                                 | Simulate, Test and          | Identify the Optir   | nal Configura | ation for Positro | 1 PWFA           |        |  |  |
| Present ('New                                                                                                   | Regime' only)               |                      |               | Goals             |                  |        |  |  |
| 4GeV                                                                                                            |                             | 100pC, >10           | GeV @ >1Ge∖   | //m, dE/E < 5%, E | mittance Preserv | ved    |  |  |
| Q ~ 100 pC                                                                                                      |                             |                      | in at         | least one regime. |                  |        |  |  |
| 3 GeV/m                                                                                                         |                             |                      | New Regime    | seeded with two   | bunches          |        |  |  |
| ΔE/E ~ 2%                                                                                                       |                             |                      | Hollow        | Channel Plamsa    | S                |        |  |  |
| ε not measured                                                                                                  |                             |                      | Q             | uasi non-linear   |                  |        |  |  |
| Plasma Source Development                                                                                       |                             |                      |               |                   |                  |        |  |  |
|                                                                                                                 |                             | Go                   | oals          |                   |                  |        |  |  |
| Tailored density ramps for beam matching and emittance preservation                                             |                             |                      |               |                   |                  |        |  |  |
| Uniform, hollow and near-hollow transverse density profiles                                                     |                             |                      |               |                   |                  |        |  |  |
| Accelerating region density adjustable from 10 <sup>15</sup> - 10 <sup>17</sup> e <sup>-</sup> /cm <sup>3</sup> |                             |                      |               |                   |                  |        |  |  |
| Accelerating length > 1m                                                                                        |                             |                      |               |                   |                  |        |  |  |
| Scalable to high repetition rate and high power dissipation                                                     |                             |                      |               |                   |                  |        |  |  |
| Driver lechnology                                                                                               |                             |                      |               |                   |                  |        |  |  |
| Construction and Operation of LCLS-II and European XFEL with MW Beam Power                                      |                             |                      |               |                   |                  |        |  |  |

ICFA Seminar '17 (Ottawa) – Advanced and Novel Acceleration Techniques – Arnd Specka

## known challenges for plasma accelerators (e<sup>-</sup>/e<sup>+</sup>)

- energy spread -> luminosity, luminosity spectrum
- Output to the second second
- emittance preservation (transv. fields, scattering, ion motion)
- multi-staging (driver in/out-coupling, interstage transport
- ositron acceleration
- spin polarization
- wall-plug energy efficiency of driver (especially laser)
- beam quality and stability (energy spread, emittance)

## known challenges for plasma accelerators (e<sup>-</sup>/e<sup>+</sup>)



- Interprete and the second s
- emittance preservation (transv. fields, scattering, ion motion)
- multi-staging (driver in/out-coupling, interstage transport)
- ositron acceleration
- Spin polarization
- wall-plug energy efficiency of driver (especially laser)
- beam quality and stability (energy spread, emittance)

## E efficiency and E spread: optimized beam loading



#### High-Efficiency Acceleration of an Electron Bunch in a Plasma Wakefield Accelerator



Narrow energy spread acceleration with high-efficiency has been demonstrated

Next decade will focus on simultaneously preserving beam emittance

## known challenges for plasma accelerators (e<sup>-</sup>/e<sup>+</sup>)

- energy spread -> luminosity, luminosity spectrum
- Oriver-to-beam efficiency and beam loading
- emittance preservation (transv. fields, scattering, ion motion)

multi-staging (driver in/out-coupling, interstage transport)

- ositron acceleration
- Spin polarization
- wall-plug energy efficiency of driver (especially laser)
- Seam quality and stability (energy spread, emittance)

## CILEX 10PW laser (F): planned 2 stage experiment

#### Challenges for staging scheme

- Large divergence + energy spread of beam produced by LPA
  - $\Rightarrow$  strong demand on beam optics
  - $\Rightarrow$  strong emittance growth in the drift after the plasma
- Coupling of laser beams to the plasma structures in a narrow and busy room

#### • Under study: EuPRAXIA, Cilex-Apollon, ...



## CILEX 10PW laser (F): planned 2 stage experiment

#### Challenges for staging scheme

- Large divergence + energy spread of beam produced by LPA
  - $\Rightarrow$  strong demand on beam optics
  - $\Rightarrow$  strong emittance growth in the drift after the plasma
- Coupling of laser beams to the plasma structures in a narrow and busy room

#### • Under study: EuPRAXIA, Cilex-Apollon, ...



# Active Plasma Lens focuses 1.4 GeV beam onto phosphor screen at ~11 m from source and ~60 cm from source



180 200 220 238

Collaboration with Feurer/Tarkeshian (UBern) for charge density monitoring

## first independently powered staging of two consecutive laser plasma accelerators at BELLA Center of LBNL



12 LIS DEPARTMENT OF OF PRL 184802 (2015)

BERKELEY LA

S. Steinkaccaterator Technology & 530

## known challenges for plasma accelerators (e<sup>-</sup>/e<sup>+</sup>)

- energy spread -> luminosity, luminosity spectrum
- Output to the second second
- emittance preservation (transv. fields, scattering, ion motion)
- multi-staging (driver in/out-coupling, interstage transport)
- positron acceleration
- Spin polarization
- wall-plug energy efficiency of driver (especially laser)
- Seam quality and stability (energy spread, emittance)

2 6

#### FACET/FACET-II Have a Unique Role in Addressing Plasma **Acceleration of Positrons for Linear Collider Applications**

slide courtesy by M. Hogan

#### **Multi-GeV Acceleration in Non-linear wakes**

- New self-loaded regime of PWFA
- Energy gain 4 GeV in 1.3 meters
- Low divergence, no halo

#### **Hollow Channel Plasma Wakefield Acceleratio**

- Engineer Plasma to Control the Fields
- No focusing on axis
   Measured transverse and longitudinal wakefield



UCLA -SLAC

Gessner et al., Nature Communications 2016 Lindstrom et al., submitted 2017



## known challenges for plasma accelerators (e<sup>-</sup>/e<sup>+</sup>)

- energy spread -> luminosity, luminosity spectrum
- Output to the second second
- emittance preservation (transv. fields, scattering, ion motion)
- multi-staging (driver in/out-coupling, interstage transport)
- ositron acceleration
- Spin polarization
- wall-plug energy efficiency of driver (especially laser)

#### beam quality and stability (energy spread, emittance)



07-XI-2017

ICFA Seminar '17 (Ottawa) – Advanced and Novel Acceleration Techniques – Arnd Specka

## EUPRAXIA Introduction: Structure, Roles

![](_page_28_Picture_1.jpeg)

- Collaboration of **38 institutes** 
  - 16 EU laboratories are beneficiaries
  - 22 associated partners from EU, Europe, Asia and US contribute in-kind, 4 of them joined after first year of project: KIT (Germany), FZJ (Germany), University Jerusalem (Israel), IAP (Russia)
- Collaboration brings together:
  - Big science labs: photon science, particle physics
  - Laser laboratories: high power lasers
  - International laboratories: CERN, ELI (associated)
  - Universities: accelerator research, plasma, laser
- Organized in 8 EU-funded work packages and
   6 in-kind work packages
  - DESY is coordinator laboratory (R. Assmann)
- 125 scientists in our work list

![](_page_28_Figure_13.jpeg)

## The Team

![](_page_29_Picture_1.jpeg)

#### The EuPRAXIA team

P. D. Alesini, A. S. Alexandrova, M. P. Anania, N. E. Andreev, R. W. Assmann, T. Audet, A. Bacci, I. F. Barna, A. Beaton, A. Beck, A. Beluze, A. Bernhard, S. Bielawski, F. G. Bisesto, J. Boedewadt, F. Brandi, O. Bringer, R. Brinkmann, E. Bründermann, M. Büscher, G. C. Bussolino, A. Chance, M. Chen, E. Chiadroni, A. Cianchi, J. Clarke, M. Croia, M. E. Couprie, B. Cros, J. Dale, G. Dattoli, N. Delerue, O. Delferriere, P. Delinikolas, J. Dias, U. Dorda, K. Ertel, Á. Ferran Pousa, M. Ferrario, F. Filippi, J. Fils, R. Fiorito, R. A. Fonseca, M. Galimberti, A. Gallo, D. Garzella, P. Gastinel, D. Giove, A. Giribono, L. A. Gizzi, F. J. Grüner, A. F. Habib, L. C. Haefner, T. Heinemann, B. Hidding, B. J. Holzer, S. M. Hooker, T. Hosokai, B. Imre, D. A. Jaroszynski, C. Joshi, M. Kaluza, O. S. Karger, S. Karsch, E. Khazanov, D. Khikhlukha, A. Knetsch, D. Kocon, P. Koester, O. Kononenko, G. Korn, I. Kostyukov, L. Labate, C. Lechner, W. P. Leemans, A. Lehrach, F. Y. Li, X. Li, A. Lifschitz, V. Litvinenko, W. Lu, A. R. Maier, V. Malka, G. G. Manahan, S. P. D. Mangles, B. Marchetti, A. Mosnier, A. Mostacci, A. S. Müller, Z. Najmudin, K. Masaki, F. Massimo, F. Mathieu, G. Maynard, T. J. Mehrling, A. Y. Molodozhentsev, A. Mosnier, A. Mostacci, A. S. Müller, Z. Najmudin, P. A. P. Nghiem, F. Nguyen, P. Niknejadi, J. Osterhoff, D. Papadopoulos, B. Patrizi, R. Pattathil, V. Petrillo, M. A. Pocsai, K. Poder, R. Pompili, L. Pribyl, D. Pugacheva, S. Romeo, A. R. Rossi, A. A. Sahai, Y. Sano, P. Scherkl, U. Schramm, C. B. Schroeder, J. Schwindling, J. Scifo, L. Serafini, Z. M. Sheng, L. O. Silva, C. Simon, U. Sinha, A. Specka, M. J. V. Streeter, E. N. Svystun, D. Symes, C. Szwaj, G. Tauscher,

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Figure_3.jpeg)

![](_page_31_Picture_0.jpeg)

#### **EuPRAXIA Development Paths**

towards high quality electron beams

![](_page_31_Picture_3.jpeg)

![](_page_31_Figure_4.jpeg)

#### Summary and conclusions

- wide variety of advanced acceleration schemes, physics simple
- I plasma acceleration enters age of maturity
- Complementarity between approaches (LWFA, PWFA, proton diven PWFA)
- I plasma accelerator experiments and simulations address all collider and HEP relevant issues (or challenges): efficiency, beam quality, staging, positrons, stability,....
- I plasma accelerator driven light source as accelerator R&D facility should be the intermediate step from acceleration experiments and bunches to accelerators and beams

EuPRAXIA overview paper: P. A. Walker *et al.,* 'Horizon 2020 EuPRAXIA design study', *J. Phys.: Conf. Ser.* 874, 012029 (2017) http://iopscience.iop.org/article/10.1088/1742-6596/874/1/012029 ANAR2017 Workshop report:

http://www.lpgp.u-psud.fr/icfaana/ana-publications-2017

Summary and conclusions

# Thank you for your attention

- complementarity between approaches (LWFA, PWFA, proton diven PWFA)
- I plasma accelerator experiments and simulations address all collider and HEP relevant issues (or challenges): efficiency, beam quality, staging, positrons, stability,....
- I plasma accelerator driven light source as accelerator R&D facility should be the intermediate step from acceleration experiments and bunches to accelerators and beams

EuPRAXIA overview paper: P. A. Walker *et al.,* 'Horizon 2020 EuPRAXIA design study', *J. Phys.: Conf. Ser.* 874, 012029 (2017) http://iopscience.iop.org/article/10.1088/1742-6596/874/1/012029 ANAR2017 Workshop report:

http://www.lpgp.u-psud.fr/icfaana/ana-publications-2017

## **BACKUP SLIDES**

## Laser-plasma acceleration of protons (and ions)

![](_page_36_Figure_1.jpeg)

## Laser-plasma acceleration of protons (and ions)

![](_page_37_Figure_1.jpeg)

#### **Acceleration - Focalisation**

#### • Electron beam should sit at the correct phase of

▶ the accelerating field
 W<sub>z</sub> = E<sub>z</sub>
 W<sub>⊥</sub> = E<sub>r</sub> − cB<sub>θ</sub>
 Relation Panofsky-Wenzel
 ∂W<sub>z</sub>/∂r = ∂W<sub>⊥</sub>/∂ξ

![](_page_38_Figure_3.jpeg)

# Capillary discharge guides laser pulses AND (de)focuses electron beams

![](_page_39_Figure_1.jpeg)

#### Electron beam

- Symmetric focusing
- Tunable strength with peak gradients >3,000 T/m
- Low chromatic aberrations
- Small bore

- J. Van Tilborg et al., PRL 2015
- J. van Tilborg et al. PR-AB 20, 032803 (2017)