Searches for Supersymmetry at the LHC

Isabell-Alissandra Melzer-Pellmann DESY Hamburg

Outline

Introduction

- Searches for strong SUSY production
- Searches for electroweak production
- *R*-Parity violating scenarios
- Searches for long-lived particles
- Indirect searches

Isabell Melzer-Pellmann

Searches for Supersymmetry at the LHC

ICFA 2017

CMS CMS CATLASS CATLASS CHCCD

Strong production

Searches tuned on final states:

- Full hadronic final states
- Single-lepton
- Di-lepton (opposite- and same-sign)
- Multi-lepton
- B-tagged jets
- Explore jet substructure

- SM background mostly in the tails of distributions
 - Difficult to determine from simulation
 - Estimated from control regions in data and transfer factors

Searches for Supersymmetry at the LHC

Searches for gluinos and squarks

- Characteristic for strong production: (large) number of high-energetic jets and missing transverse energy
- typical variables:

Isabell Melzer-Pellmann

ATLAS

Lнср Гнср

$$H_{\rm T} = \sum p_{\rm T}^{\rm jet}$$
$$H_{\rm T}^{\rm miss} = \left| -\sum \vec{p}_{\rm T}^{\rm jet} \right|$$

CMS

Searches for electroweak production

 $\widetilde{\chi}_1^{\pm}$

 Chargino-neutralino production assuming decay through sleptons

CMS

ATLAS

Lнср Гнср

> Chargino-neutralino production assuming mass-degenerate Winos, decay includes
> W, Z or H

 Neutralino-neutralino

 (assuming Higgsinolike neutralinos)
 production in GMSB
 (higher cross section than Winos)

 $\widetilde{\chi}_2^0$

 $\widetilde{\chi}_1^{\pm}$

Isabell Melzer-Pellmann

Searches for Supersymmetry at the LHC

ICFA 2017____

CMS CMS CATLASS CHICDS

SUSY not yet discovered, but...

SUSY might be hiding somewhere else, so we check also other scenarios:

- decays to long-lived particles
- *R*-parity violating scenarios

Isabell Melzer-Pellmann

Searches for Supersymmetry at the LHC

CMS CMS CATLASS CHICDS

SUSY not yet discovered

SUSY might be hiding somewhere else, so we check also other scenarios:
 indirect hints

Isabell Melzer-Pellmann

Searches for Supersymmetry at the LHC

CMS PATLAS CHCb

Indirect searches: lepton flavor universality (cc)

Flavor asymmetry in charged currents: B meson decays into tau + neutrino

Measure ratio of decays to taus compared to decay to electron and muon:

- Consistent result from 3 different experiments (+small theor. uncertainty)
- Combination of D and D* results reach 3.9σ excess over SM
 Hint for charged Higgs boson??

Isabell Melzer-Pellmann

Searches for Supersymmetry at the LHC

ICFA 2017

Conclusion and outlook

- Many direct searches for SUSY performed no smoking gun so far
- Models with low cross section profit from increasing luminosity
- Standard plain-vanilla searches would profit more from accelerators with higher energy
- Indirect searches show consistently disagreement to SM prediction looking forward to results with higher statistics!

Isabell Melzer-Pellmann

Searches for Supersymmetry at the LHC

ICFA 2017

BACKUP – leaving no stone unturned...

Summa RELAS SUSY Search

Lнср Гнср

Summary ATLAS

	ATLAS SUSY Sea	rches* - 95%	% C I	L Lo	wer Limits			ATLAS Preliminary
	Model	ℓ, μ, τ, γ lets	Emiss	(f dt[f]	⁻¹] Mass limit	√s - 7	8 TeV √s = 13 TeV	$\gamma s = 7, 0, 13$ lev Reference
	HOGEN HOGEN #J.G.R.A.CMSSM #J.d. → U ^S #J.d. → U ^S (Compressed)	0-3 ε.μ./1-2 τ 2-10 jets/3 0 2-6 jets mono-jet 1-3 jets 0 2-6 jets 3 ε.μ. 4 jets 0 7-11 jets 1-2 τ + 0-1 ℓ 0-2 jets 2 ε.μ.(Z) 2 jets 0 mono-jet 0 mono-jet	 T b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36	6-8 608 GeV 6 608 GeV 8 608 GeV 8 8 8 900 GeV 8 900 GeV 8 900 GeV	1.85 TeV 1.57 TeV 2.01 TeV 1.825 TeV 1.825 TeV 1.85 TeV 1.85 TeV 1.8 TeV 1.8 TeV	$\begin{split} m(2)-m(2) &\\ m(2)^2-220~GeV, m(1^{+0}~gen.~4)-m(2^{+0}~gen.~4)) \\ m(2)^2-220~GeV, m(1^{+0}~gen.~4)) \\ m(2)^2-220~GeV \\ m(2)^2-220~GeV \\ m(2)^2-2400~GeV \\ m(2)^2-400~GeV \\ m(2)^2-400~GeV \\ m(2)^2-320~GeV \\ m$	10507.0552 ATLAS-CONF-2017.022 ATLAS-CONF-2017.022 ATLAS-CONF-2017.022 ATLAS-CONF-2017.022 ATLAS-CONF-2017.033 1057.05979 1056.09150 1557.05493 ATLAS-CONF-2016.056 1553.03290 1553.03290 1553.0318
ard ann	$ \begin{array}{c} \overline{g} \overline{g}, \overline{g} \rightarrow b \overline{b} \overline{k}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow t \overline{t} \overline{k}_{1}^{0} \\ \overline{g} \overline{g}, \overline{g} \rightarrow b \overline{t} \overline{k}_{1}^{+} \\ \overline{g} \overline{g}, \overline{g} \rightarrow b \overline{t} \overline{k}_{1}^{+} \end{array} $	$\begin{array}{ccc} 0 & 3 \ b \\ 0 & -1 \ e, \mu & 3 \ b \\ 0 & -1 \ e, \mu & 3 \ b \end{array}$	Yes Yes Yes	36.1 36.1 20.1	<u>ē</u> <u>ē</u> <u>8</u> 1	1.92 TeV 1.97 TeV .37 TeV	m(\tilde{k}_{1}^{0})<600 GeV m(\tilde{k}_{1}^{0})<200 GeV m(\tilde{k}_{1}^{0})<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3rd ann aminthe	$ \begin{array}{c} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{t}_1^0 \\ g \\ $	$\begin{array}{cccc} 0 & 2 b \\ 2 e, \mu (\mathrm{SS}) & 1 b \\ 0.2 e, \mu & 1.2 b \\ 0.2 e, \mu & 0.2 \mathrm{jets/1-2} \\ 0 & \mathrm{mono-jet} \\ 2 e, \mu (Z) & 1 b \\ 3 e, \mu (Z) & 1 b \\ 1.2 e, \mu & 4 b \end{array}$	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	Fr 950 GeV k1 275-700 GeV i117-170 GeV 200-720 GeV i109-198 GeV 205-950 GeV i1 90-323 GeV i2 220-780 GeV i2 320-880 GeV		$\begin{split} m_{1}\xi_{1}^{2}(-420\text{GeV} \\ m_{1}\xi_{1}^{2}(-200\text{GeV},m_{1}\xi_{1}^{2}) = m_{1}^{2}\xi_{1}^{2}(+100\text{GeV} \\ m_{1}\xi_{1}^{2}(-2m_{1}^{2}\xi_{1}^{2}) = K_{1}^{2}\text{GeV} \\ m_{1}\xi_{1}^{2}(-1) = 16\text{GeV} \\ m_{1}\xi_{1}^{2}(-1) = 15\text{GeV} \\ m_{1}\xi_{1}^{2}(-1) = 5\text{GeV} \\ m_{1}\xi_{1}^{2}(-1) = 0\text{GeV} \\ m_{1}\xi_{1}^{2}(-1) = 0\text{GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1400.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
Elvi	$\begin{array}{c} t_{11} t_{12} t_$	$\begin{array}{cccc} 2 \ e, \mu & 0 \\ 2 \ e, \mu & 0 \\ 2 \ \tau & - \\ 3 \ e, \mu & 0 \\ 2 \ 3 \ e, \mu & 0 \\ 2 \ 3 \ e, \mu & 0 \\ 2 \ 3 \ e, \mu & 0 \\ -2 \ 5 \ e, \mu & \gamma & 0 \ 2 \ b \\ 4 \ e, \mu & 0 \\ -\gamma \ c \ 1 \ e, \mu + \gamma & - \\ \gamma \ c \ 2 \ \gamma & - \end{array}$	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	7 90-440 GeV 51 710 GeV 520 GeV 580 GeV 535 GeV 635 GeV W 115-370 GeV W 590 GeV	'eV m(ἔ ⁺ ₁) m(ἔ ⁰ ₂)	$\begin{array}{l} m(\xi_1^0)\!=\!0 \\ m(\xi_1^0)\!=\!0, m(\xi, \eta)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)) \\ m(\xi_1^0)\!=\!0, m(\xi, \eta)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)) \\ m(\xi_2^0), m(\xi_1^0)\!=\!0, m(\xi, \eta)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)) \\ m(\xi_1^0)\!=\!m(\xi_2^0), m(\xi_1^0)\!=\!0, \xi \text{ decoupled} \\ m(\xi_1^0), m(\xi_1^0)\!=\!0, m(\xi, \eta)\!=\!0.5(m(\xi_2^0)\!+m(\xi_1^0)) \\ e^{-r\xi_1^0}m(\xi_1^0)\!=\!0, m(\xi, \eta)\!=\!0.5(m(\xi_2^0)\!+m(\xi_1^0)) \\ e^{-r\xi_1^0}m(\xi_1^0)\!=\!0.5(m(\xi_2^0)\!+m(\xi_1^0)) \\ e^{-r\xi_1^0}m(\xi_1^0)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)) \\ e^{-r\xi_1^0}m(\xi_1^0)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)\!+m(\xi_1^0) \\ e^{-r\xi_1^0}m(\xi_1^0)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)) \\ e^{-r\xi_1^0}m(\xi_1^0)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)\!+m(\xi_1^0)\!=\!0.5(m(\xi_1^0)\!+m(\xi_1^0)\!+m(\xi_1^0)\!+m(\xi_1^0) \\ e^{-r\xi_1^0}m(\xi_1^0)\!=\!0.5(m(\xi_1^0)\!+$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05483 1507.05483
I ond-lived	$\label{eq:constraints} \begin{array}{c} \text{Direct}\ \tilde{x}_1^T \ \text{prod.}\ \text{long-lived}\ \tilde{x}_1^T\\ \text{Direct}\ \tilde{x}_1^T \ \text{prod.}\ \text{long-lived}\ \tilde{x}_1^T\\ \text{Direct}\ \tilde{x}_1^T \ \text{prod.}\ \text{long-lived}\ \tilde{x}_1^T\\ \text{Stable}\ \tilde{x}_1^T \ \text{hadron}\\ \text{Stable}\ \tilde{x}_1^T \ \text{hadron}\\ \text{MSB},\ \text{stable}\ \tilde{x}_1^T \ \text{hadron}\\ \text{MSB},\ \text{stable}\ \tilde{x}_1^T \ \text{hadron}\\ \text{GMSB},\ \tilde{x}_1^T \ \text{hadron}\\ \tilde{x}_1^T \ \text{hadron}\ \tilde{x}_1^T \ \text{hadron}\\ \tilde{x}_1^T \ \text{hadron}\ \tilde{x}_1^T \ \text{hadron}\\ \tilde{x}_1^T \ \text{hadron}\ \tilde{x}_1^T \ \text{hadron}\ \tilde{x}_1^T \ \text{hadron}\ \tilde{x}_1^T \ $	Disapp. trk 1 jet dE/dx trk - 0 1-5 jets trk - dE/dx trk - 1-2 μ - 2 γ - displ. <i>ee(eµ/µµ</i> - displ. vtx + jets -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	1 430 GeV 2 495 GeV 3 850 GeV 4 537 GeV 4 537 GeV 4 440 GeV 4 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} m(\tilde{k}_1^2) - m(\tilde{k}_1^0) - 160 \ \text{MeV}, \tau(\tilde{k}_1^1) - 0.2 \ \text{ns} \\ m(\tilde{k}_1^2) - m(\tilde{k}_1^0) - 160 \ \text{MeV}, \tau(\tilde{k}_1^2) - 15 \ \text{ns} \\ m(\tilde{k}_1^0) = 100 \ \text{GeV}, 10 \ \mu_{\text{SF}} - \tau(\tilde{\mu}) - 100 \ \text{s} \\ m(\tilde{k}_1^0) = 100 \ \text{GeV}, \tau > 10 \ \text{ns} \\ 10 \ \text{ctan}/c50 \\ 10 \ \text{ctan}/c50 \\ 1 \ \text{ct}(\tilde{k}_1^0) < 3 \ \text{ns}, \ \text{SPSB} \ \text{model} \\ 7 \ \text{cct}(\tilde{k}_1^0) < 400 \ \text{nm}, \ m(\tilde{g}) = 1.3 \ \text{TeV} \\ 6 \ \text{ccr}(\tilde{k}_1^0) < 400 \ \text{nm}, \ m(\tilde{g}) = 1.1 \ \text{TeV} \end{split}$	ATLAS-CONF-2017-017 1568.05332 1131.6584 1690.05129 1694.04520 1411.6795 1400.5542 1594.05162 1594.05162
	$ \begin{array}{c} LFV \; pp \rightarrow \bar{v}_{r} + X, \; \bar{v}_{r} \rightarrow e\mu/er/\mu \\ \text{Bilmear RPV OMSSM} \\ \bar{\chi}^{2}_{1}(\bar{\chi}, \bar{\chi}^{2}_{r}) \rightarrow W \chi^{2}_{1} \chi^{2}_{1} \rightarrow v e_{r} e_{r} e_{r} \mu \\ \bar{\chi}^{2}_{1}(\bar{\chi}, \bar{\chi}^{2}_{r}) \rightarrow W \chi^{2}_{1} \chi^{2}_{1} \rightarrow \tau v_{e}, er v_{\tau} \\ \bar{\chi}^{2}_{2} \bar{\chi}, \bar{\chi}^{2}_{r} \rightarrow W \chi^{2}_{1} \chi^{2}_{1} \rightarrow q q \\ \bar{\chi}^{2}_{2} \bar{\chi}, \bar{\chi}^{2}_{r} \rightarrow q q \\ \bar{\chi}^{2}_{2} \bar{\chi}, \bar{\chi}^{2}_{r} \rightarrow q q \\ \bar{\chi}^{2}_{2} \bar{\chi}, \bar{\chi}^{2}_{r} \rightarrow q q \\ \bar{\chi}^{2}_{1} \bar{\chi}^{2}_{r} - h \\ \bar{\eta}^{2}_{1}, \bar{\eta}_{r} \rightarrow b \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau & -\\ 2e, \mu({\rm SS}) & 0.3b\\ 4e, \mu & -\\ 3e, \mu+\tau & -\\ 0 & 4-5{\rm large-}R \\ 0 & 4-5{\rm large-}R \\ 1e, \mu & 8-10{\rm jets}/0-\\ 1e, \mu & 8-10{\rm jets}/0-\\ 0 & 2{\rm jets+}2l\\ 2e, \mu & 2b \end{array}$	- Yes Yes jets - jets - 4 b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	5: 6:8	1.9 TeV 1.45 TeV eV / 1.55 TeV 2.1 Te 1.65 TeV -1.45 TeV	$\begin{split} \lambda_{311}^{\prime} = 0.11, \lambda_{132(13)(23)} = 0.07 \\ m(Q) = m(Q), c_{12,0} < 1 \text{ mm} \\ m(\tilde{\chi}^{\prime}^{\prime}) = 000 \text{ ceV}, \lambda_{312} \approx 0 \text{ (I = 1, 2)} \\ m(\tilde{\chi}^{\prime}^{\prime}) = 02 \text{ cmV}(\tilde{\chi}^{\prime}), \lambda_{312} \approx 0 \text{ BP}(t) = BR(t_{0}) = 00 \text{ cmV} \\ m(\tilde{\chi}^{\prime}^{\prime}) = 1 \text{ TeV}, \lambda_{132} = 0 \text{ mV} \\ m(\tilde{\chi}^{\prime}) = 1 \text{ TeV}, \lambda_{132} = 0 \text{ BP}(t_{1} \rightarrow 0, t_{132} = 0 \text{ mV}) \\ BP(t_{1} \rightarrow 0, t_{12} > 10 \text{ cmV}) = 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016.075 1405.5086 ATLAS-CONF-2016.057 ATLAS-CONF-2016.057 ATLAS-CONF-2016.057 ATLAS-CONF-2017.013 ATLAS-CONF-2017.013 ATLAS-CONF-2016.022 ATLAS-CONF-2016.026
0	ther Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 2 <i>c</i>	Yes	20.3	č 510 GeV		m(${ar k}_1^0){<}200{ m GeV}$	1501.01325
*C F	Only a selection of the available m bhenomena is shown. Many of the simplified models, c.f. refs. for the	ass limits on new state limits are based on assumptions made.	əs or	1	0 ⁻¹ 1		Mass scale [TeV]	1
Is	sabell Melze	r-Pellma	an	n	Searches for	Supe	rsymmetry	at the LHC

CMS CATLAS CATLAS CHCCD

SUSY models and signatures

• The SUSY parameters determines the signature in **simplified models**

- R-parity conserving (RPC) + large mass difference between SUSY particles
 - → Large missing transverse energy, high activity in the detector (at least if produced in strong production)
- RPC + small mass difference (`compressed spectra')
 → Events often difficult to distinguish from SM background
- **R-parity violating (RPV)**, lightest SUSY particle (LSP) decays to SM particles
 → No missing transverse energy, but possibly several leptons
- **Nature of LSP** can drive final state as well:
 - Gravity mediated SUSY breaking: Mostly neutralino LSP
 - Gauge mediated SUSY breaking: Gravitino LSP photons, Z or W in final state

HL-LHC projections for $\widetilde{\tau}$ search

Sensitivity depends on model assumption (right-handed $\widetilde{\tau}$ are challenging)

5 σ (2 σ) discovery reach up to 700 (500) GeV for combined scenario, for right-handed $\widetilde{\tau}$ only 2 σ exclusion possible <400 GeV

Isabell Melzer-Pellmann

CMS

PATLAS

Lнср

Searches for Supersymmetry at the LHC

ICFA 2017

SUSY Cross sections

