Dark Energy from Large Galaxy Surveys Ofer Lahav (University College London)

DES mass map from weak lensing

Outline

- 100 years of the Cosmological Constant
- Current and future galaxy surveys
- New Cosmology results
- The path to Neutrino mass
- Spin-offs:
- Gravitational Waves and Multi-messengers
- Big Data

What accelerates the Universe?

"a simple but strange universe"

Einstein 1917 Lambda

142 – Sitzung der physikalitetomathematischen Klasse vom 8. Februar 1917

Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie.

Von A. Einstein.

Modified Newtonian

$$\nabla^2 \phi - \lambda \phi = 4\pi \kappa \rho$$

Modified GR

$$G_{\mu\nu} - \lambda g_{\mu\nu} = -\kappa (T_{\mu\nu} - \frac{1}{2}g_{\mu\nu}T)$$

In a static universe:

$$\lambda = \frac{\kappa \rho}{2} = \frac{1}{R^2}.$$

English translation: http://einsteinpapers.press.princeton.edu/vol6-trans/433?ajax

The Chequered History of the Cosmological Constant Λ

The old problem:Theory exceeds observational limits on Λ by 10^{120} !New problems:

- Is Λ on the LHS or RHS? $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$
- Why are the amounts of Dark Matter and Λ so similar at present?

DE equation of state: Pressure/density = w(a) = w₀ + w_a (1-a) w=-1 correspond to Λ

Galaxy surveys timeline

Mayall 4-Meter Telescope

Probes of Dark Energy

Standard candles

Standard rulers

Gravitational Lensing

7

BAOs and redshift distortion

Alam et al. (2016)

BAOs first detected in 2005 by 2dF and SDSS

Dark Energy Spectroscopic Instrument (DESI)

- Main goal: Baryon Acoustic Oscillation (BAO)
- Spectra of 35 million galaxies and quasars over $14,000 \text{ deg}^2$ in 5 years.

z=1

z=0.7

z=0.5

- 5000 fibers
- Spectrum over 360-980 nm

z=2

1 million Ly-A QSOs

+2.5 million QSOs z = 4z=3

18 million ELGs

r=3.0 Gpc/h

r=2.0 Gpc/h

r=0.5 Gpc/h

r=1.0 Gpc/h

DESI

4 million LRGs

Current and planned Large Surveys

Project	Dates	$\rm Area/deg^2$	Data	Spec- z Range	Methods
BOSS	2008-2014	10,000	Opt-S	0.3 - 0.7 (gals)	BAO/RSD
				$2 - 3.5 (Ly \alpha F)$	
DES	2013-2018	5000	Opt-I		WL/CL
					SN/BAO
eBOSS	2014-2020	7500	Opt-S	$0.6 - 2.0 \; (gal/QSO)$	BAO/RSD
				$2 - 3.5 (Ly\alpha F)$	
SuMIRE	2014-2024	1500	Opt-I		WL/CL
			Opt/NIR-S	0.8 - 2.4 (gals)	BAO/RSD
HETDEX	2014-2019	300	Opt-S	1.9 < z < 3.5 (gals)	BAO/RSD
DESI	2019-2024	14,000	Opt-S	0 - 1.7 (gals)	BAO/RSD
				$2 - 3.5 (Ly\alpha F)$	-
LSST	2020-2030	20,000	Opt-I		WL/CL
					SN/BAO
Euclid	2020-2026	15,000	Opt-I		WL/CL
			NIR-S	0.7 - 2.2 (gals)	BAO/RSD
WFIRST	2024-2030	2200	NIR-I		WL/CL/SN
			NIR-S	1.0 - 3.0 (gals)	BAO/RSD

RPP 2017

- Multi-probe approach Wide field: Cluster Counts, Weak Lensing, Large Scale Structure Time domain: Supernovae
- * Survey strategy 300 million photometric redshifts (grizY) over 5000 deg²
 + 2500 SN Ia over 27 sq deq fields
 - + 2500 SN Ia over 27 sq deg fields overlaps with other surveys
- * Currently 5th (last) year of observations
- * Over 140 DES papers on the arXiv
- * Over 400 scientists from 7 countries

DES Year 1 results from galaxy clustering and weak lensing

- DES vs Planck CMB: differ in central values, but consistent according to Bayesian Evidence in the full parameter space
- DES final (Year 5) analysis will include ~4 times Year 1 data and additional probes (clusters, supernovae)

DES Collaboration 2017 arXiv:1708.01530

Tension in LCDM?

- Hubble constant:
- h = 0.67 (Planck) or
- h = 0.73 (Cepheids +SN IA) ?
- The amplitude Sigma8 in Planck vs WL
- Anomalies: the CMB Cold Spot
- Tests of GR on large scales => Modified Gravity?

Possible outcomes of ongoing and future surveys

Open Questions on Dark Energy DE equation of state:

Pressure/density = $w(a) = w_0 + w_a (1-a)$

- Is there a fundamental reason for **w=-1** (Lambda)?
- Is it on the **LHS or RHS** of Einstein's equation?
- Is there a physical case for w<-1?
- What is the case for a time-dependent w(z)?
- When should we stop with w?
 (note 'precision' vs 'accuracy', cf. curvature)
- Does Anthropic reasoning make sense?
- Is a higher level theory to be discovered, connecting GR to Quantum Mechanics and Thermodynamics? Will it take another 100 years?

Cosmic Vision forecast

arXiv:1604.07626

The Big Neutrino Questions

- What is the absolute sum of neutrino mass?
 (given the lower limit 0.06 eV from oscillations)
- What is the hierarchy Normal or Inverted?
- Is N_{eff} = 3.045, or larger (Sterile neutrino /'dark radiation')?
- Is the neutrino its anti-particle (Majorana)?

Neutrino Mass from Cosmology

Neutrinos decoupled when they were still relativistic, hence they wiped out structure on small scales

 $k > k_{nr} = 0.018 (m_v / 1 \text{ eV})^{1/2} \Omega_m^{1/2} h/Mpc$

 $\Omega_v h^2 = M_v / (93 \text{ eV})$

CDM+ 1.9 eV neutrinos. CDM structure 'washed out' Agarwal & Feldman 2010

Planck 2015 ++ (arXiv:1502.01589)

N_{eff}= 3.15 +- 0.46 (95% CL) Consistent with standard 3.045

2-sigma Neutrino mass upper limits from existing data

Data	Authors	$M_v = \Sigma m_i$
2dFGRS	Elgaroy, OL et al. (2002)	< 1.8 eV
MegaZ-LRG + WMAP	Thomas et al. (2010)	< 0.28 eV
Planck13+robust surveys	Leistedt et al. (2014)	< 0.3 eV
Planck15++	Planck collaboration 2015	< 0.23 eV
BOSS Ly-alpha + Planck15	Palanque-Delabrouille etal. (2015)	< 0.12 eV
DES Y1 + Planck15+JLA+BAO	DES collaboration (2017)	< 0.29 eV

All upper limits 95% CL, but different assumed priors !

2-sigma errors on Neutrino mass – forecast for future surveys

Data	Authors	Error (Σ)
DES (LSS) + Planck	OL et al. (2010)	0.1 eV
DES (LSS+WL) + Planck	Font-Ribera et al. (2014)	0.08 eV
Euclid (LSS/WL) + Planck	Amendola et al. 2016	0.04 eV
		0.05 eV
LSST (WL)+Planck	Abazajian et al. 2014	0.04 eV
DESI++	Font-Ribera et al. 2014	0.04 eV
SKA++	Abdalla & Rawling 2007	0.05 eV

Errors 95% CL, but different assumed priors !

Combining Neutrino and Cosmology experiments

0.96

0.88

0.80

0.72

0.24

S

A global Bayesian analysis of neutrino mass from Double Beta Decay, Oscillations & Cosmology

Caldwell et al., arXiv:1705.01945 Agostini et al. arXiv:1705.02996 To fix or not to fix to minimal oscillations $M_{nu} = 0.06 \text{ eV}$?

0.36

0.42

DES Y1, fixed neutrinos

0.30

 Ω_m

Planck, fixed neutrinos

DES Y1

Planck

DES collaboration arXiv:1708.01530

First Binary Neutron Star discovered in both GW and light

LIGO-Hanford	LIGO-Livingston	Virgo	
observed by	H, L, V	inferred duration from 30	~ 60
source type	binary neutron star (NS)	inforred # of CIM queles	
date	17 August 2017	from 30 Hz to 2048 Hz**	~ 300
time of merger	12:41:04 UTC	initial astronomer alert	07
signal-to-noise ratio	32.4	latency*	27 m
false alarm rate	< 1 in 80 000 years	HLV sky map alert latency*	5 hrs 14 m
distance	85 to 160 million light-years	HLV sky area [†]	28 de
total mass	2.73 to 3.29 M.	followed the trigger	
primary NS mass	1.36 to 2.26 M		gamma-ray, X-ra
secondary NS mass	0.86 to 1.36 M.	also observed in	ultraviolet, optic infrared, rac
mass ratio	0.4 to 1.0	host galaxy	NGC 49
radiated GW energy	> 0.025 M _* c ²	source RA, Dec	13'09"48"23"22'5
radius of a 1.4 M _* NS	likely ≈ 14 km	sky location	in Hydra constellatio
effective spin parameter	-0.01 to 0.17	viewing angle (without and with host galaxy identification)	≤ 56° and ≤ 2
effective precession spin parameter	unconstrained	galaxy wertuincaborry	
GW speed deviation from speed of light	< few parts in 1015	from host galaxy identification	62 to 107 km s ⁻¹ Mp
30°	S ² R the	Images: time frequency tra (left, HL = light blue, improved HL optical source local GW=gravitational wave, M = t ence may	Inces (top), GW sky map HLV = dark blue, V = green, tion = cross-hair) EM = electromagnetic, te=22100 km

H/L=LIGO Hanford/Livingston, V=Virgo Parameter ranges are 90% credible intervals "referenced to the time of merger "maximum likelihood estimate 150% credible region

GW170817 FACTSHEET

Jul del 1		
	1 A	
	A.	Deleg
		and the

DECam/DES image of GW170817 in galaxy NGC4993 (40 Mpc away)

DECam observation (>14 days post merger) E +

Soares-Santos & DES arXiv:1710.05459

Palmese & DES arXiv:1710.06748

SKA Big Data Challenge

www.skatelescope.org

- UCL+7 other CDT-DIS funded by STFC
- 122 PhD students in data science started in October

Summary

- 27 years of LCDM: supported by most current observations.
- Important to test LCDM further (e.g. local dynamics, CMB Cold Spot, gravitational redshift, parameter 'tension')
- Timeline: past (APM, 2dF & SDSS,WMAP, Planck, ...), present (BOSS, DESI, HSC, ...), future (LSST, DESI, Euclid, WFIRST, SKA,...)
- What are the prospects for **a new paradigm shift**, beyond LCDM, eg w(z) or ModGrav ?
- Spin-offs: GW multi-messengers, Big Data, ...

Extra slides

Planck++ parameters

	Planck TT+lowP+lensing	$Planck \ { m TT+lowP+lensing+ext}$
$\Omega_{ m b}h^2$	0.02226 ± 0.00023	0.02227 ± 0.00020
$\Omega_{ m c}h^2$	0.1186 ± 0.0020	0.1184 ± 0.0012
$100\theta_{\rm MC}$	1.0410 ± 0.0005	1.0411 ± 0.0004
$n_{ m s}$	0.968 ± 0.006	0.968 ± 0.004
au	0.066 ± 0.016	0.067 ± 0.013
$\ln(10^{10} \Delta_R^2)$	3.062 ± 0.029	3.064 ± 0.024
h	0.678 ± 0.009	0.679 ± 0.006
σ_8	0.815 ± 0.009	0.815 ± 0.009
$\Omega_{ m m}$	0.308 ± 0.012	0.306 ± 0.007
Ω_{Λ}	0.692 ± 0.012	0.694 ± 0.007

RPP 2017

$M_{nu} = m_1 + m_2 + m_3$
from Planck++

Table 1.2: Summary of $\sum m_{\nu}$ constraints.			
	Model	95%CL	Ref.
CMB alone			
Pl15[TT+lowP]	$\Lambda CDM + \sum m_{\nu}$	$< 0.72 \mathrm{eV}$	[23]
Pl15[TT,TE,EE+lowP]	$\Lambda CDM + \sum m_{\nu}$	$< 0.49 \mathrm{eV}$	[23]
Pl15[TT+lowP]	$\Lambda CDM + \sum m_{\nu} + N_{eff}$	$< 0.73 \mathrm{eV}$	[24]
Pl16[TT+SimLow]	$\Lambda CDM + \sum m_{\nu}$	$< 0.59 \mathrm{eV}$	[26]
Pl16[TT,TE,EE+SimLow]	$\Lambda CDM + \sum m_{\nu}$	$< 0.34\mathrm{eV}$	[26]
CMB + probes of background evolution			
Pl15[TT+lowP] + BAO	$\Lambda CDM + \sum m_{\nu}$	$< 0.21 \mathrm{eV}$	[23]
$P_{115}[TT, TE, EE+lowP] + BAO$	$\Lambda CDM + \sum m_{\nu}$	$< 0.17 \mathrm{eV}$	23
$P_{115}[TT+lowP] + JLA$	$\Lambda CDM + \sum m_{\nu}$	$< 0.33 \mathrm{eV}$	24
$P_{115}[TT+lowP] + BAO$	$\Lambda CDM + \sum m_{\nu} + N_{eff}$	$< 0.27\mathrm{eV}$	[24]
CMB + probes of background evolution +	LSS		
Pl15[TT+lowP+lensing]	$\Lambda CDM + \sum m_{\nu}$	$< 0.68 \mathrm{eV}$	[23]
P115[TT+lowP+lensing] + BAO	$\Lambda CDM + \sum m_{\nu}$	$< 0.25 \mathrm{eV}$	[24]
$Pl15[TT+lowP+lensing] + P(k)_{DR12}$	$\Lambda CDM + \sum m_{\nu}$	$< 0.30 \mathrm{eV}$	[28]
$P_{115}[TT+lowP+lensing] + P(k)_{DR12} + HST$	$\Lambda CDM + \sum m_{\nu}$	$< 0.16 \mathrm{eV}$	[28]
Pl15[TT,TE,EE+lowP+lensing]	$\Lambda CDM + \sum m_{\nu}$	$< 0.59 \mathrm{eV}$	[23]
$P_{115}[TT, TE, EE + lowP] + BAO + P(k)_{WZ}$	$\Lambda CDM + \sum m_{\nu}$	$< 0.14 \mathrm{eV}$	[31]
$P_{115}[TT, TE, EE+lowP] + BAO+ P(k)_{DR7}$	$\Lambda CDM + \sum m_{\nu}$	$< 0.13 \mathrm{eV}$	[31]
$P_{115}[TT, TE, EE+lowP] + BAO+ P(k)_{DR12}$	$\Lambda CDM + \sum m_{\nu}$	$< 0.16 \mathrm{eV}$	[30]
$Pl15[TT+lowP+lensing] + Ly\alpha$	$\Lambda CDM + \sum m_{\nu}$	$< 0.12 \mathrm{eV}$	[29]
Pl16[TT+SimLow+lensing] + BAO	$\Lambda CDM + \sum m_{\nu}$	$< 0.17 \mathrm{eV}$	26
$P_{115}[TT+lowP+lensing] + BAO$	$\Lambda CDM + \sum m_{\nu} + \Omega_k$	$< 0.37 \mathrm{eV}$	24
Pl15[TT+lowP+lensing] + BAO	$\Lambda CDM + \sum m_{\nu} + w$	$< 0.37 \mathrm{eV}$	[24]
Pl15[TT+lowP+lensing] + BAO	$\Lambda CDM + \sum m_{\nu} + N_{eff}$	$< 0.32 \mathrm{eV}$	[23]
Pl15[TT,TE,EE+lowP]+BAO+P(k)DR12+JLA	$\Lambda CDM + \sum m_{\nu} + \Omega_k + w$	$< 0.31 \mathrm{eV}$	30
PI15 TT TE EE+lowP+lensing	ACDM+Sm +5 parama	< 0.66 aV	190

RPP 2017

N_{eff} from Planck++ [vs. standard $N_{eff} = 3.045$]

	Model	68%CL	Ref.
CMB alone			
Pl15[TT+lowP]	$\Lambda CDM + N_{eff}$	3.13 ± 0.32	[23]
Pl15[TT,TE,EE+lowP]	$\Lambda \text{CDM} + N_{\text{eff}}$	2.99 ± 0.20	[23]
Pl15[TT+lowP]	$\Lambda \text{CDM} + N_{\text{eff}} + \sum m_{\nu}$	3.08 ± 0.31	[24]
CMB + probes of background e	evolution		
Pl15[TT+lowP] + BAO	$\Lambda CDM + N_{eff}$	3.15 ± 0.23	[23]
P115[TT,TE,EE+lowP] + BAO	$\Lambda \text{CDM} + N_{\text{eff}}$	3.04 ± 0.18	[23]
Pl15[TT+lowP] + JLA	$\Lambda \text{CDM} + N_{\text{eff}}$	$3.18^{+0.28}_{-0.32}$	[24]
Pl15[TT+lowP] + BAO	$\Lambda \text{CDM} + N_{\text{eff}} + \sum m_{\nu}$	$3.18\substack{+0.24\\-0.27}$	[24]
CMB + probes of background e	evolution + LSS		
Pl15[TT+lowP+lensing]	$\Lambda CDM + N_{eff}$	$3.13_{-0.34}^{+0.29}$	[24]
- + BAO	$\Lambda \text{CDM} + N_{\text{eff}}$	$3.08 \substack{+0.22\\-0.24}$	[24]
- + BAO + JLA + HST	$\Lambda CDM + N_{eff}$	3.41 ± 0.22	[25]
- + BAO	$\Lambda CDM + N_{eff} + \sum m_{\nu}$	3.2 ± 0.5	[23]
Pl15[TT,TE,EE+lowP+lensing]	$\Lambda CDM + N_{eff} + 5$ -params.	$2.93^{+0.51}_{-0.48}$	[32]