Searching for signal beyond the SM in flavour physics

Emi Kou (LAL-IN2P3)

ICFA Seminar @ Ottawa, 6-9 November 2017

Introduction: searching new physics in flavour physics

Flavour physics

- Investigating the fundamental interaction through transitions among different quarks and leptons
- The CP violation is one of the most interesting phenomena in flavour physics

Flavour Physics within SM

In SM, the difference between mass and interaction basis explains, the GIM mechanism, the CP Violation! Very concise!

$$\mathcal{L}_{Y} = \underbrace{\sum_{ij} Y_{ij}^{u} Q_{iL} \left(\begin{array}{c} \phi^{0} \\ \phi^{-} \end{array}\right) u_{jR} + \underbrace{\sum_{ij} Y_{ij}^{d} Q_{iL} \left(\begin{array}{c} -\phi^{-\dagger} \\ \phi^{0\dagger} \end{array}\right) d_{jR} + h.c.}$$

$$\mathbf{Y}$$

$$\mathbf{Y}$$

$$\mathbf{Y}$$

$$\mathbf{W}$$

$$\mathbf{W$$

The Unitarity triangle: test of Unitarity

Successful explanation of flavour physics up to now! Hundreds of observables (including dozens of CPV) are explained by this single matrix.

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also CP violation parameters can appear. N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

SUSY: Quark and Squark mass matrices can not be diagonalized at the same time ---> FCNC and CP violation Mutli-Higgs model, Left-Right

symmetric model:

Many Higgs appearing in this model ---> tree level FCNC and CP violation Warped extradimension with flavour in bulk: Natural FCNC suppression though, K-K mixing might be too large due to the chiral enhancement

Flavour Physics beyond SM

The indirect search of new physics through quantum effect: very powerful tool to search for new physics signal!

This very simple picture does not exist in most of the extensions of SM: suppression of the FCNC is NOT automatic and also CP violation parameters can appear. N.B.: SM also has an "unwanted" CP parameter (strong CP problem).

SUSY: Quark and Squark mass matrices can not be diagonalized at the same time ---> FCNC and CP violation Mutli-Higgs model, Warped extra-Left New with particle introduces new source of flavour/CP violations. Then, if new physics exist, we should observe those phenomena at some point! The strategies...

Strategy for discovery via precision

WE WANT

5-7σ

DEVIATION !!

Discovery by the intensity frontier experiments.

Reducing uncertainties = probing higher energies

$$\Delta_{NP} = \text{Deviation from SM}$$

= (exp. - SM) ± $\sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$
= C/(M_{NP})ⁿ

Reducing experimental uncertainties

Reducing theoretical uncertainties

$$\Delta_{NP} = (exp. - SM) \pm \sqrt{(\sigma_{exp})^2 + (\sigma_{SM})^2}$$

- Theoretical development in QCD higher order corrections, Lattice QCD etc allow to reduce the theoretical uncertainties.
- Improved measurements of "theoretical control channels" are very important to reduce the theoretical errors.

What is the odds for discovery: example of CKM unitarity triangle

The Unitarity triangle: test of Unitarity?

What do we expect to see in the future???

Consistent with SM

What do we expect to see in the future???

E.K. for B2TiP working group

2015 2016 2017 0.3 0.2 By ~2025, with LHCb and Belle II full data set, 0.1 -0.1 we expect the errors to be reduced significantly. Let's see what could happen when the error will go down to $\delta \phi_1$ (δβ)=0.4°, $\delta \phi_2$ (δα)=1°, $\delta \phi_3$ (δγ)=1.5°,

 $\delta V_{ub}^{today}/\delta V_{ub}=1/2$

If the central value remains exactly the same (though unlikely)...

0.2

0.1

-0.1

8σ effect (≠SM)!

0.3

0.4

0.2

0.1

0.1

0.5

0.5

0.6

04

0.3

0.1

0.5

0.5

0.4

0.3

0.1

05

8σ effect (≠SM)!

If the central • To understand this " 8σ " effect better, we have run a Monte Carlo simulation. • We randomly sample the central values (1000 trials) assuming Gaussian measurements and compute the significance. The result shows that the chance to observe deviation more than 5σ (8σ) significance is currently 60% (20%)! E.K. & F. Le Diberder for B2TiP working group

2025

Near future of flavour physics...

LHCb Run-II anomalies and theory? **B->K***μ+μ-: Re(C9) (3.4σ) **B->D*τυ/B->D*τυ:** R(D*) (4.1σ) P5' (*O) 8(D) 8(D) BaBar, PRL109,101802(2012) ē ~ $\Delta \chi^2 = 1.0$ contours Belle, PRD92,072014(2015) LHCb. PRL115.111803(2015) • LHCb data D ATLAS data SM Predictions Belle, PRD94,072007(2016) 0.45 Belle data CMS data R(D)=0.300(8) HPQCD (2015) Belle, PRL118,211801(2017) LHCb. FPCP2017 R(D)=0.299(11) FNAL/MILC (2015) 0.5 +SM from DHMV R(D*)=0.252(3) S. Fajfer et al. (2012) 0.4 $\Delta \chi^2$ SM from ASZB LHCb: JHEP 02 (2016) 104.35 Belle: PRL 118 (2017) 111801 ATLAS-CONF-2017-023 CMS-PAS-BPH-15-008 0.3 15 0.3 -0.5 0.25 10 HFIAV **FPCP 201** 0.2 10 15 0.2 0.3 0.4 0.5 0.6 $q^2 \,[{\rm GeV^2/c^4}]$ R(D)LHCb 3.5 4.5 $\operatorname{Re}(C_0)$

B->K*e+e-/K*μ+μ-: **R(K*)** (2.1-2.5σ)

		$low-q^2$	central- q^2
-	$R_{K^{*0}}$	$0.66 ^{+ 0.11}_{- 0.07} \pm 0.03$	$0.69 {}^{+}_{-} {}^{0.11}_{0.07} \pm 0.05$
-	$95.4\%~\mathrm{CL}$	[0.52, 0.89]	[0.53, 0.94]
	$99.7\%~\mathrm{CL}$	[0.45, 1.04]	[0.46, 1.10]

LHCb Run-II anomalies and theory? **B->K*\mu+\mu-: Re(C9) (3.4\sigma) B->D*τυ/B->D*τυ:** R(D*) (4.1σ) P5' -Very convincing signals. X -SM uncertainties in $B \rightarrow K^* \mu + \mu - to$ be further scrutinised. -Many model independent studies (e.g. global fit of the effective couplings) are ongoing. -The appearance of the anomaly implies a very "flavour/Dirac structure specific" new physics. 95.4% CL [0.52, 0.89][0.53, 0.94]0.40.5LHCb 0.299.7% CL [0.45, 1.04][0.46, 1.10]BaBar LHCl 0.0

 $q^2 \, [\text{GeV}^2/\epsilon]$

 2 $|GeV^{2}$

in preparation (646 pages as of today) B2TiP theory community + Belle II collab. editor: E.K. & Ph. Urquijo (Melbourne U.)

- B physics : CKM UT measurement, rare decays, CP violation, QCD-based computation
- **D** physics : CP violation, rare decays, multi-body decays

Many

contributions from

theorists!!

Belle II(/LHCb) precision vs theory uncertainties

- » UT angle measurements (very clean): Belle II+LHCb will reduce the errors significantly $\delta \phi_1(\delta \beta)=0.2^\circ$, $\delta \phi_2(\delta \alpha)=1^\circ$, $\delta \phi_3(\delta \gamma)=1.5^\circ$, \Leftrightarrow theory can achieve about the same precision.
- » Rare decays, hadronic B decays... → more difficult but data driven, more measurements could give us a guide.

ctions: Inclusive b→sl

0.5

uber, Ishikawa, Virto '2016

5

Contours: SM Pull with 50/ab; BR & AFE

in preparation (646 pages as of today) B2TiP theory community + Belle II collab. editor: E.K. & Ph. Urquijo (Melbourne U.)

- B physics : CKM UT measurement, rare decays, CP violation, QCD-based computation
- D physics : CP violation, rare decays, multi-body decays

Will Belle II tell us something about LHCb anomalies?

Many

contributions from

theorists!!

» Also observation of B-> $\gamma\gamma$, K(*) in a few years!

in preparation (646 pages as of today) B2TiP theory community + Belle II collab. editor: E.K. & Ph. Urquijo (Melbourne U.)

tau physics : LFV, CP violation, a "wish list"...

Many

contributions from

theorists!!

- g-2 related measurement : hadronic cross section, two photon processes
- quarkonium and exotics : missing quarkonium (below threshold), pros and cons of the exotic interpretations

in preparation (646 pages as of today) B2TiP theory community + Belle II collab. editor: E.K. & Ph. Urquijo (Melbourne U.)

- Dark matter and Higgs : dark photon search in phase II (2018), light Higgs search from quarkonium decays
- Theory: lattice "forecast", flavour benchmark models (and their "DNA test"), global fit packages

Many

contributions from

theorists!!

Lattice forecast for Vub

$\mathcal{L} [ab^{-1}]$	$\sigma_{\mathcal{B}} \text{ (stat}\pm \text{sys)}$	$\sigma_{LQCD}^{ m forecast}$	$\sigma_{V_{ub}}$
1	3.6 ± 4.4	ourmont	6.2, 6.2
1	1.3 ± 3.6	current	3.6, 3.6
5	1.6 ± 2.7	in 5 pro	3.2, 3.0
	0.6 ± 2.2	III 0 y15	2.1, 1.9
10	1.2 ± 2.4	in 5 yrs	2.7, 2.6
10	0.4 ± 1.9	III 5 y15	1.9, 1.7
50	0.5 ± 2.1	in 10 vrs	1.7, 1.4
	0.2 ± 1.7	III 10 y15	1.3, 1.0

upper/down number: wo/w EM correction

Conclusions

- The coming years are very exciting: the upgrades of several experiments in flavour physics will improve the sensitivity to new physics drastically. A breakthrough is possible!
- The LHCb anomalies are very intriguing. A confirmation by Belle II experiment is possible even in a few years time (e.g. at ~10 ab⁻¹).
- Theoretically, what we are looking for seems to be "Flavour/Dirac structure specific", which may need be postulated to further construct new physics models.

What has been confirmed?

Observed Quark masses

	1st generation	2nd generation	3rd generation
up type	up	charm	top
charge 2/3	2.2±0.5MeV	1.27±0.03GeV	173.21±0.87GeV
down type	down	strange	bottom
charge -1/3	4.7±0.5MeV	96±6MeV	4.18±0.04GeV
charged lepton charge -1	electron 0.511MeV	µ 105.7MeV	τ 1.78GeV
neutrinos	ν _e	μ	ντ
charge O	<2.0eV	<0.17eV	<18.2eV

Observed Quark mixing VCKM

 ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
 ✓ V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.
 ✓ N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.

Vckm: Cabibbo– Kobayashi–Maskawa matrix

What has been confirmed?

Observed Quark masses

 ✓ SM does not say anything about the Yukawa coupling so the masses and the couplings are not predictable.
 ✓ V_{CKM} has to be a 3x3 unitary matrix which includes only one complex phase.
 ✓ N.B. LHC and LCs can tell us the linearity of the masse and the Higgs coupling.

Vckm: Cabibbo– Kobayashi–Maskawa matrix

