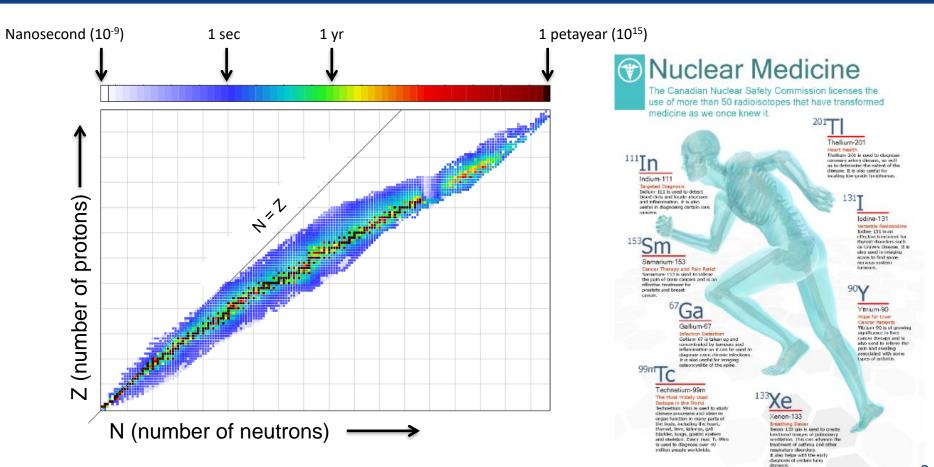


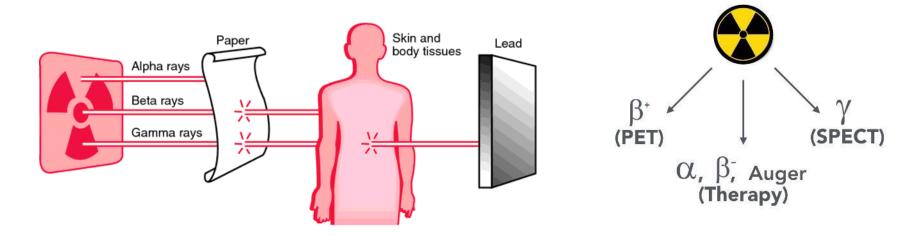
Canada's national laboratory for particle and nuclear physics and accelerator-based science

Medical Isotopes

Paul Schaffer Associate Laboratory Director – Life Sciences, TRIUMF


November 7, 2017

- I am a full-time employee of TRIUMF
- I hold an unpaid position (interim CEO), ARTMS Products, Inc.
- TRIUMF is part owner of ARTMS Products, Inc.
- I am a listed inventor on several patents in technology licensed to ARTMS


Isotopes in Medicine

Taken from: http://www.cs.uml.edu/teams-academy/uploads/Physics4/nuclides.png

Isotopes in Medicine

Considerations:

- Emission type/intended application
- Radiological properties: half-life, branching ratio(s)
- Chemical properties: compatibility with radiopharmaceutical process

- Biological experiments with natural radioactivity
 (*Tracer principle*) G. deHevesy
 Biological experiments with artificial radioactivity
- 1935 Phosphorus metabolism in rats (³²P)
 - O. Chievitz, G. deHevesy
- 1945 Inhalation of ¹¹CO
 - C.A. Tobias, J.H. Lawrence, F. Roughton
- since 1946 Availability of many long-lived reactor-produced radionuclides
- since 1960 Production of large number of short-lived radionuclides using cyclotrons for in-vivo studies

1980s Emergence of modern PET imaging

Diagnostic Radionuclides

For SPECT

γ-emitters (100 – 250 keV)
^{99m}Tc, (steady use)
¹²³I (increasing)
²⁰¹TI, ⁶⁷Ga (declining)

Therapeutic Radionuclides

- β⁻-emitters (³²P, ⁹⁰Y, ¹³¹I, ¹⁵³Sm, ¹⁷⁷Lu)
- α-emitter (²¹¹At, ²²³Ra, ²²⁵Ac)
- Auger electron emitters (¹¹¹In, ¹²⁵I, ¹¹⁹Sb)
- X-ray emitter (¹⁰³Pd)

(increasing significance)

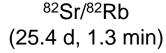
• For PET

β⁺ emitters (511 keV photons)
¹¹C, ¹³N, ¹⁵O, ¹⁸F, ⁸²Sr (⁸²Rb), ⁶⁴Cu (increasing use)
⁶⁸Ge (⁶⁸Ga) (rapidly increasing use)

Making Isotopes

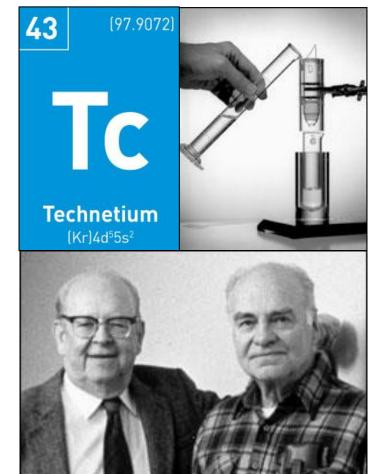
Reactor

Cyclotrons (Accelerators)

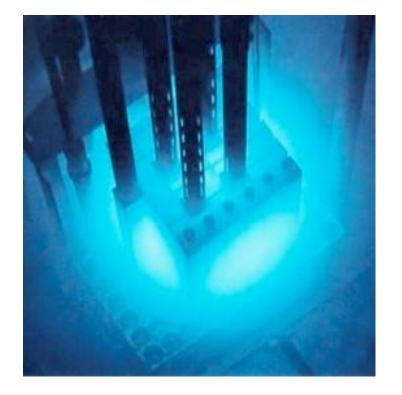

Isotope Generators

⁶⁸Ge/⁶⁸Ga (271 d, 68 min)

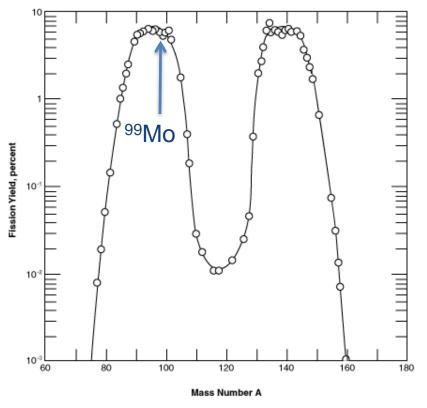
⁹⁹Mo/^{99m}Tc (66 hr, 6 hr)


•Transportable, easy to use

•Some (⁶⁸Ga) experiencing wait times, difficult and expensive to purchase


Technetium

- BNL, 1950s: Walter Tucker and Margaret Green developed the first ⁹⁹Mo/^{99m}Tc generator (1957)
- 1958 patent application abandoned due to low market potential
- BNL, 1960: Powell Richards, newly in charge of isotope production, presented the 1st paper at the 7th International Electronic and Nuclear Symposium
- Richards met with Paul Harper on the flight to Rome and spent the flight "extolling the merits of ^{99m}Tc" (half-life = 6 hrs, 140 keV, ~100% IT)
- By 1966, BNL backed out of generator production in favour of commercial suppliers
- Currently used in 30-40 million patients/yr



Making Isotopes: Reactors

Thermal Neutron Fission of U-235

http://www.toolboxpro.org/classrooms/template.cfm?ID=1730&P=113563



Reactor Supply Model

Issues:

- Economics/subsidies
- Politics/misuse
- Social/environmental
- Single point of failure

essor

Generator Manufacturer

Radiopharmacy

Clinic

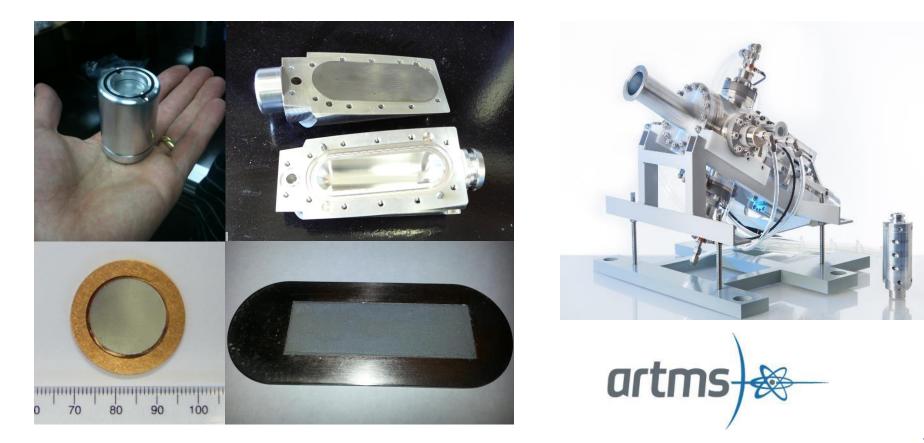
- Current ⁹⁹Mo demand: 9,000 6d Ci/wk
- Require 35% buffer capacity for supply stability
- No fewer than 9 producers, 6 processors currently on-line
 - 2 more produces, 1 additional processor expected on-line within 2 years
- Current ⁹⁹Mo production capacity: ~17,300 6d Ci/wk
 - Additional ~2500 6d Ci/wk capacity coming on-line <2 years
- Challenges continue:
 - Push for full-cost recovery
 - Anti-proliferation conversion from HEU to LEU
 - 6 of 9 reactors scheduled to end operations within 10 years
 - Some products (⁶⁰Co, ¹⁹²Ir, ¹²⁵I...) not easily produced by other methods

Production of ⁹⁹Mo via neutron bombardment of ⁹⁸Mo: ⁹⁸Mo(n,γ)⁹⁹Mo
 Current players:

 Production of ⁹⁹Mo via fission of low enriched ²³⁵U (with gas extraction):

Current players:

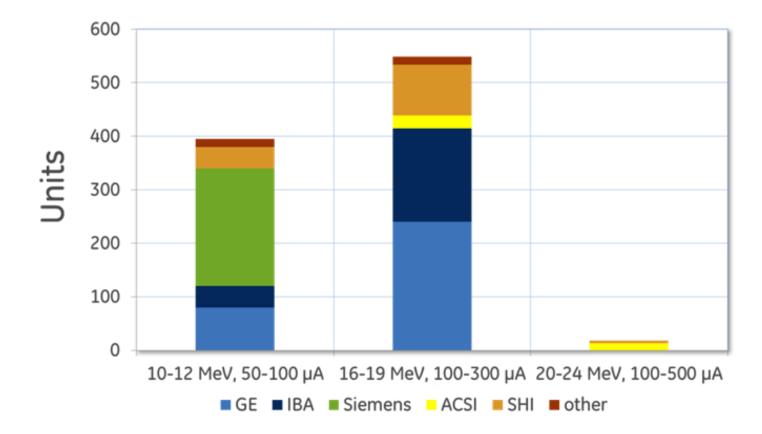
In Pursuit of Alternative Production Methods for ⁹⁹Mo/^{99m}Tc • Production of ⁹⁹Mo via phototransmutation of ¹⁰⁰Mo: ¹⁰⁰Mo(γ ,n)⁹⁹Mo Current players:


 Production of ⁹⁹Mo via subcritical fission of ²³⁵U: ²³⁵U(n,F)⁹⁹Mo Current players:

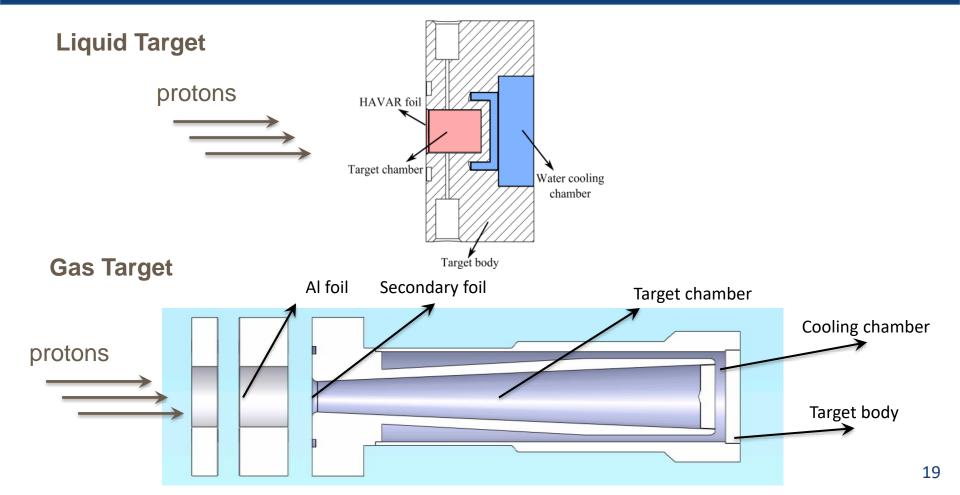
Direct production of ^{99m}Tc via proton irradiation of ¹⁰⁰Mo: ¹⁰⁰Mo(p,2n)^{99m}Tc Current players: artms-Belgravia Tech, Inc.

Cyclotron-based production of ^{99m}Tc

- Production yields of ^{99m}Tc
 - GE PETTrace (16.5 MeV, 130 µA): 4.7 Ci in 6 hrs
 - ACSI TR19 (18 MeV, 240 µA): 13.9 Ci in 6 hrs
 - ACSI **TR30** (24 MeV, 450 μA): ~**39** Ci in 6 hrs
- Concurrent ¹⁸F production demonstrated successfully
- Purification efficiency: >93%
- ⁹⁹Mo recycling efficiency: >95%
- Clinical trial completed
- Regulatory filings for Canada, UK underway
- System installed in Denmark, scheduled for UK, Switzerland

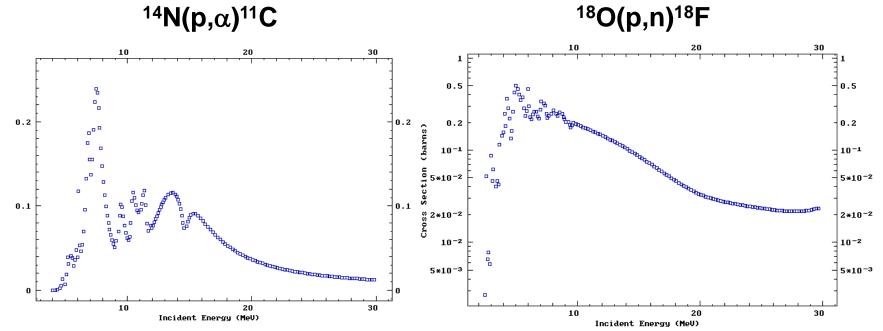

Cyclotron Supply Model

- Decentralized/regulatory
- Complex compared to generator
- Shorter-lived isotopes



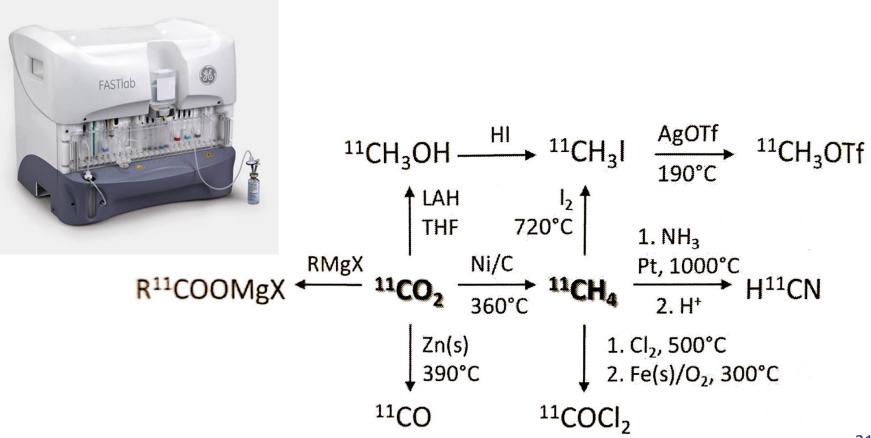
P Schaffer, F. Benard, A. Berstein et al. Phys Proc. 2015, 66, 383.

Cyclotron Production: F-18 and C-11



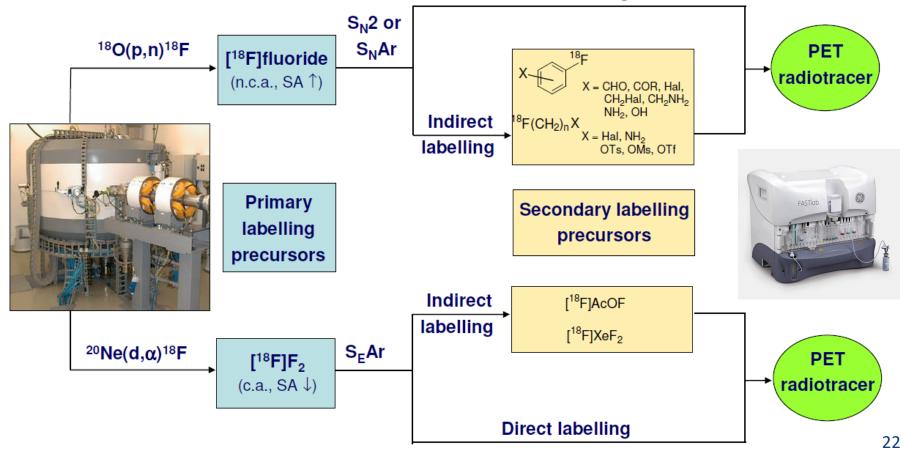
(barns)

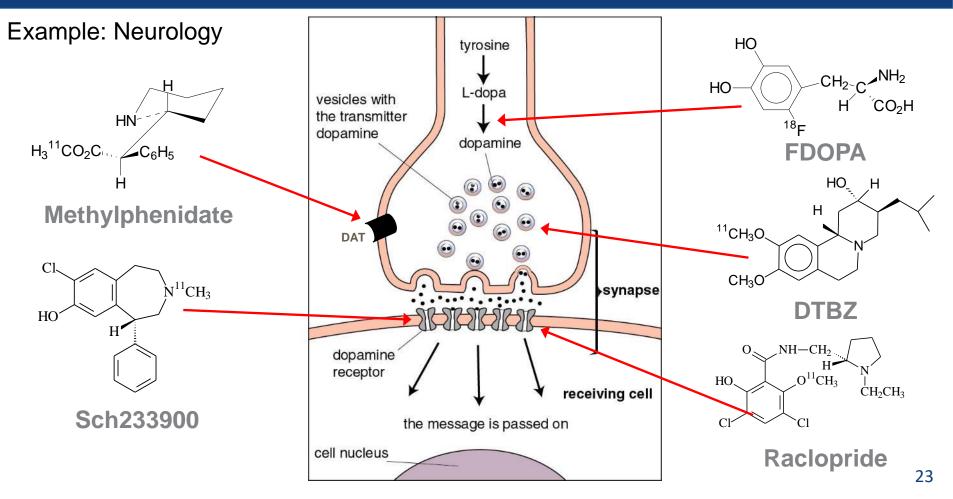
Cross Section


Cyclotron Production: F-18 and C-11

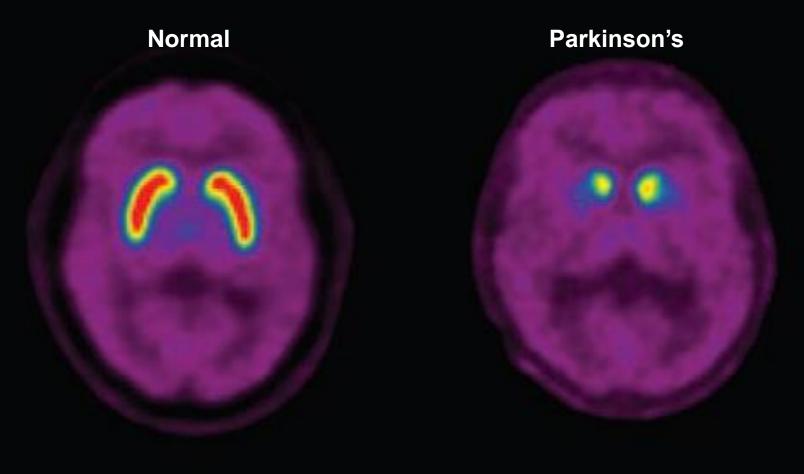
- Can be produced in gas (¹¹CH₄, ¹¹CO₂, ¹⁸F₂) or liquid (¹⁸F⁻) form
- Easy to manipulate post irradiation
- Well established, automated chemistry

Plots obtained using EXFOR: Nucl. Data Sheets 2014, 120, 272; S. Takács JNIM/B 2003,211,169



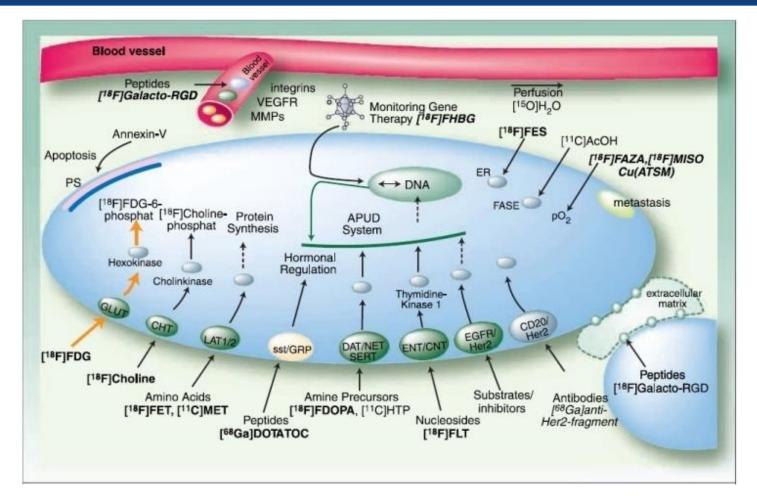

Chemistry with Isotopes

Direct labelling



Radiotracers: Tools of the Trade

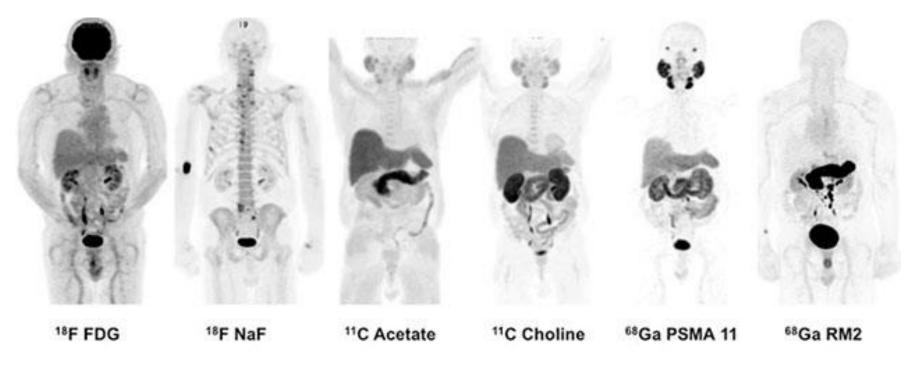
PET is Functional Imaging



Generation 1: Simple: salts, diffusion-based, non-specific imaging ^{99m}TcO₄, ^{99m}TcMDP, ¹⁸F⁻ (bone), colloid (liver) **Generation 2:** Targeted, small molecule, metabolic ^{99m}TcMIBI (heart), ^{99m}Tc-exametazime/ECD (brain), ¹⁸FDG (tumors) **Generation 3:** Targeted, larger molecular weight (peptides, antibodies), binders radiolabeled (¹¹¹In, ⁶⁸Ga) octreotide, octreotate, ^{99m}Tc TRODAT, PSMA **Generation 4(?):** Theranostic, simultaneous or iso-pharmaceutical imaging/therapy [²²³Ra]RaCl₂ (Xofigo), ¹⁵³Sm, ⁸⁹Sr, ¹³¹I, [¹³¹I]Bexxar, [⁹⁰Y]Zevalin ²²⁵Ac, ²¹²Pb, ²¹³Bi, ²¹²Bi, ²¹¹At...targeted using Gen 3 vectors

2013 tracer count*:	PET (all) = 622; (humans) = 122
	SPECT (all) = 430; (humans) = 65

Cellular/Metabolic Targets

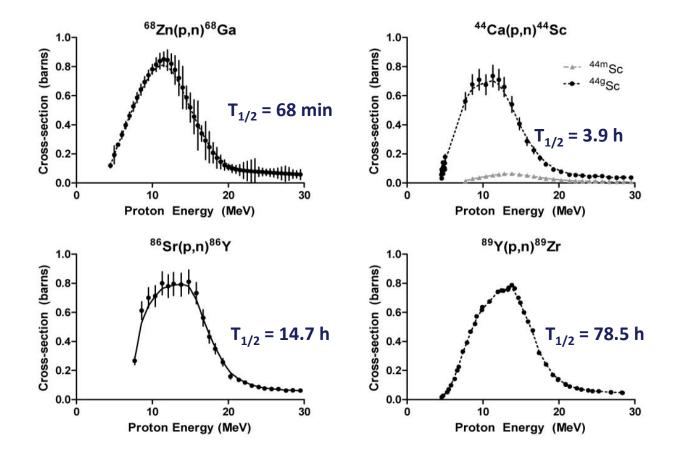


R&D into the 'Big 4': cardiovascular, neurological, oncology, metabolic research Clinic: cardiovascular, oncology, neurology

- emergence of personalized healthcare
- basic treatment response surgery, chemo, radiation
- move to use imaging to improve/avoid unnecessary treatment
 - molecular identification (breast, neuroendocrine), specific cellular antigens
- result: high cost of development to benefit few patients
- recent push into more general tracers, but with complementary utility to FDG
 - alternative metabolics (amino acids)
- Not all fields ready
 - Neurology challenges with treatment, unable to treat even if one knew
 - i.e. Parkinson's, Alzheimers

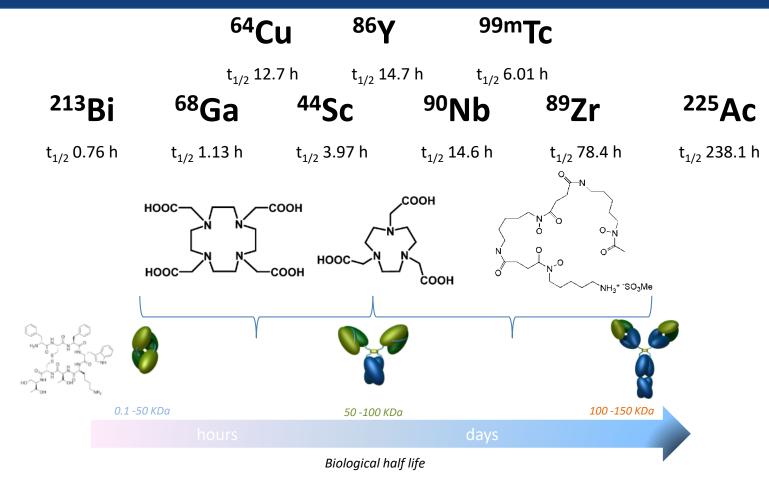
83-year-old man with biochemically recurrent prostate cancer

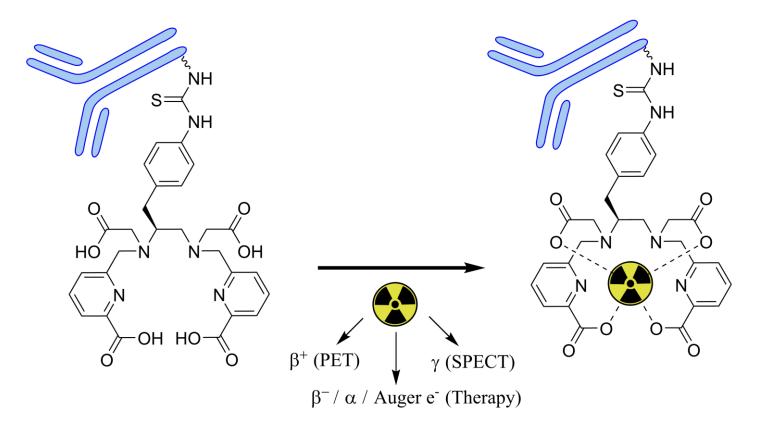
A. lagaru, et al. J. Nucl. Med. 2016;57(4):557-62



1 H Hydrogen			Short Half-Life			PET Is	-		1 1 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ong nam-ture								2 He Helium
3 Li Lithium	4 Be Beryllium		## I	Denotes a vith isoto	*** ******				enotes a	n elemer			5 B Boron	6 C Carbon	7 N Nitrogen	8 O _{Oxygen}	9 F Fluorine	10 Ne _{Neon}
11 Na _{Sodium}	12 Mg Magnesium			ooth PET	and SPI	ECT	Ek		ifferent p	phe isote physical l			13 Al Aluminum	14 Si Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	1 Ar Argon
19 K Potassium	20 Ca Calcium		21 Sc _{Scandium}	22 Ti _{Titanium}	23 V Vanadium	24 Cr _{Chromium}	25 Mn Manganese	26 Fe	27 Co _{Cobalt}	28 Ni Nickel	29 Cu Copper	30 Zn _{Zine}	31 Gallium	32 Ge Germanium	33 As Arsenic	34 Se _{Selenium}	35 Br Bromine	36 Kr Krypton
37 Rb Rubidium	38 Sr _{Strontium}		39 Y Yttrium	40 Zr ^{Zirconium}	41 Nb _{Niobium}	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh* _{Rhodium}	46 Pd Palladium	47 Ag _{Silver}	48 Cd _{Cadmium}	49 In Indium	50 Sn _{Tin}	51 Sb Antimony	52 Te Tellurium	53 I Iodine	54 Xe _{Xenon}
55 Cs _{Cesium}	56 Ba Barium	57-70 Lanthanides	71 Lu* Lutetium	72 Hf Hafhium	73 Ta Tantalum	74 W Tungsten	75 Re*	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au _{Gold}	80 Hg Mercury	81 T1 Thallium	82 Pb Lead	83 Bi Bismuth	84 Po Polonium	85 At Astatine	86 Rn Radon
87 Fr Francium	88 Ra Radium	89-102 Actinides	103 Lr Lawrencium	104 Rf Rutherfordium	105 Db _{Dubnium}	106 Sg _{Seaborgium}	107 Bh ^{Bohrium}	108 Hs Hassium	109 Mt Meitnerium	110 Ds Darmstadtium	111 Rg Roentgenium	112 Cn Copernicium	113 Uut ^{Ununtrium}	$\underset{\tiny{\rm Flerovium}}{114}$	115 Uup ^{Ununpentium}	116 Lv Livermorium	117 Uus ^{Ununseptium}	118 Uuo ^{Ununoctium}

BM Zeglis et al. Inorg. Chem. 2014, 53, 1880


Radiometals: Excitation Functions


Production routes:1) Solid Target2) 'Salt' Target

"Toolbox" for Radiometals

RETRIUMF Therapeutic/Theranostic Radiopharmaceutical Development

Use of alpha- and beta-emitting nuclides to treat micro- and/or metastatic disease

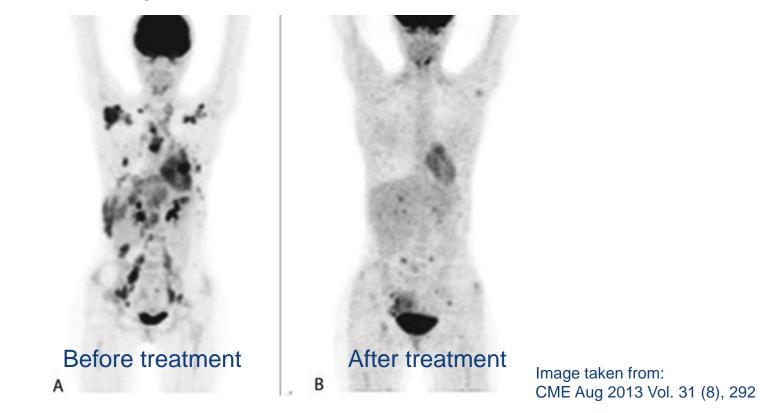
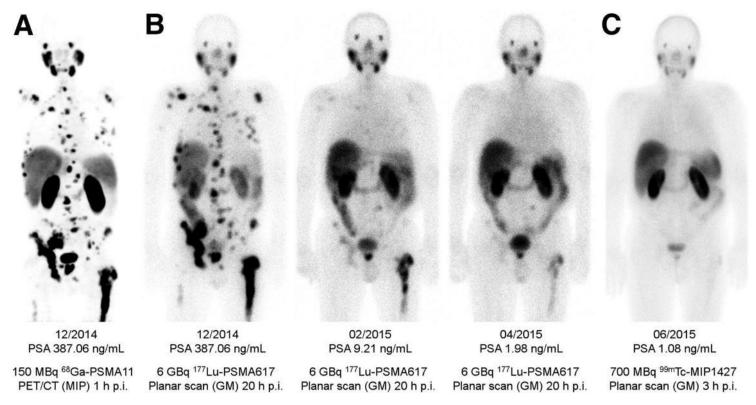
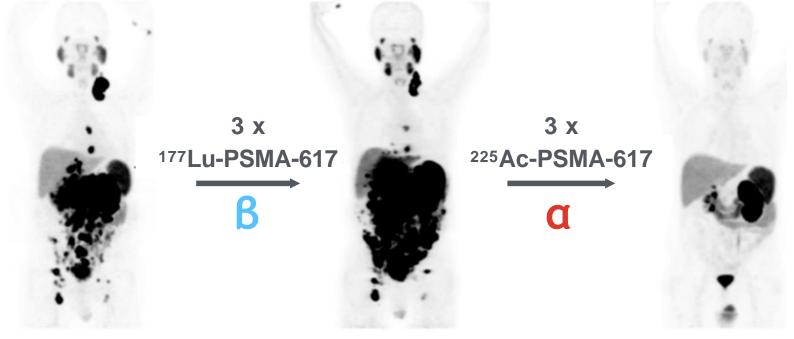



Figure: [¹⁸F]FDG scan of NHL patient A) before treatment B) after 2 treatments with ⁹⁰Y-Zevalin

Radionuclide Therapy

(A) PSMA PET/CT delivers highest resolution. C. Kratochwil et al. J Nucl Med 2016, 57, 1170

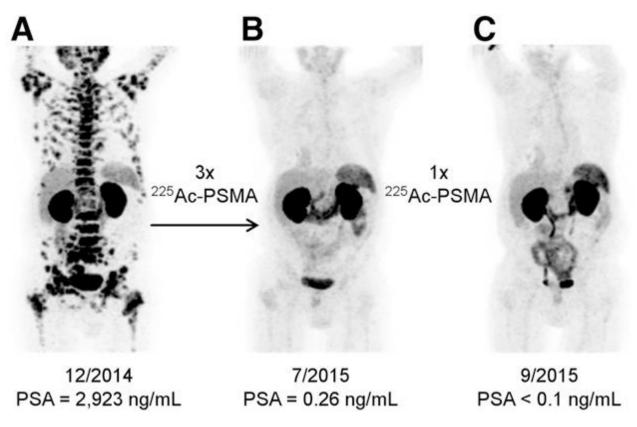


(c) Copyright 2014 SNMMI; all rights reserved

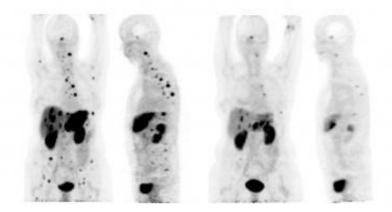
Radionuclide Therapy

When betas fail....

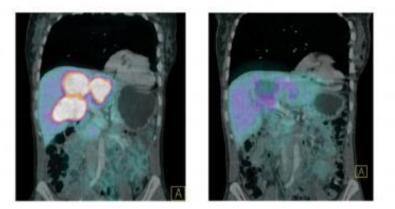
...there are always alphas!


Kratochwil et al., 2017.

Radionuclide Therapy

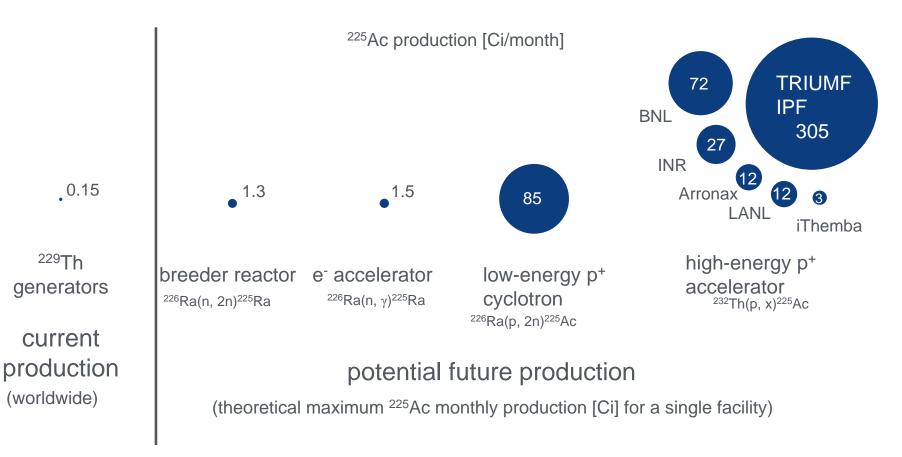

INM The Journal of NUCLEAR MEDICINE

Kratochwil et al., J. Nuc. Med. July 2016.


(c) Copyright 2014 SNMMI; all rights reserved

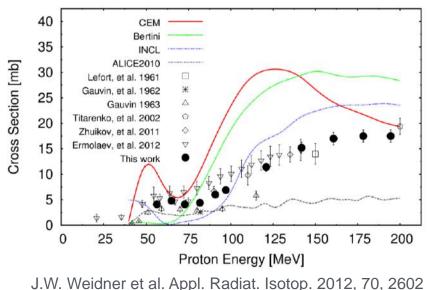
Radionuclide Therapy

Remarkable responses to Bi-213-DOTATOC observed in tumors resistant to previous therapy with Y-90/Lu-177-DOTATOC


Case I: Shrinkage of liver lesions and bone metastases after i.a. therapy with 11 GBq Bi-213-DOTATOC

Case II: Response of multiple liver lesions after i.a. therapy with 14 GBq Bi-213-DOTATOC

Comparison of ²²⁵Ac Production Methods

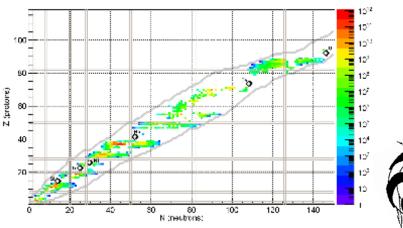


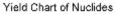
Primary ²²⁵Ac sources:

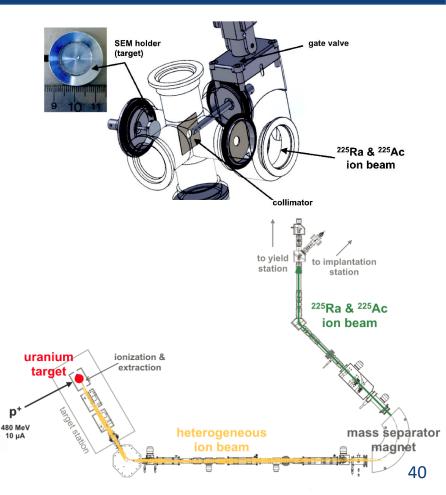
- ²²⁹Th/²²⁵Ac generator (t_{1/2} ~ 7880 y) sourced via legacy stockpile, ORNL, ITU
- DOE Tri-Lab efforts: ²³²Th(p,x) spallation
- Alternatives sought: ²²⁶Ra irradiation

Global production is ~1-2 Ci per year (<5000 patients)

- Promising early clinical trial results
- Supply vs demand is out of balance, but market needs to be nurtured, and supply needs to increase and be reliable
- Efforts underway at TRIUMF to establish feasibility of producing bulk quantities of ²²⁵Ac

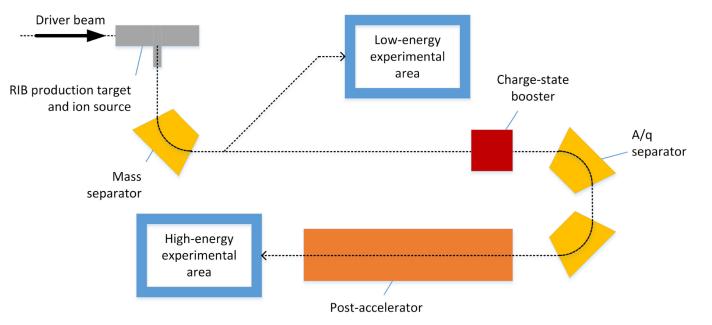



RIUMF


Tools for Discovery: ISOL for ^{211,209}At, ²²⁵Ra/²²⁵Ac

]	Run	Implantat	ion	RIB Yields	[ions/s]	Activity Prod	uced [MBq] ^c
#	Date	Duration [h]	LIS ^b	²²⁵ Ra	²²⁵ Ac	²²⁵ Ra	²²⁵ Ac
1	Dec '15	13.3	х	3.2x10 ⁷	3.8x10 ⁶	0.19	0.16
2	Apr '16	44.8	0	4.0x10 ⁶	1.0x10 ⁷	0.99	1.40
3	May '16	48.9	On	4.0x10	1.0x10	1.13	1.35
4	Aug '16	21.6	On	1.6x10 ⁸	5.7x10 ⁷	7.1	10.5
5	Dec '16	45.0	On	9.3x10 ⁷	1.3x10 ⁸	6.8	18.0
6	Apr '17	80.7	х	9.0x10 ⁷	2.8x10 ⁶	7.5	1.7

^aEE = extraction electrode; ^bInisation source; ^cquantified by HPGe γ-spec

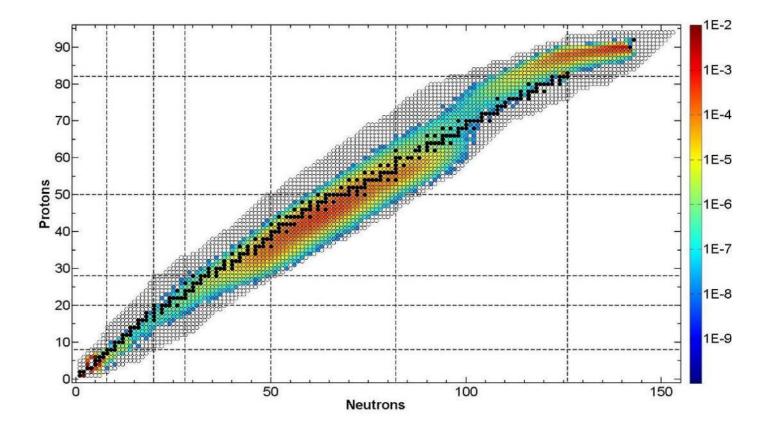


TRIUMF

Tools for Discovery: ISOLDE-MEDICIS

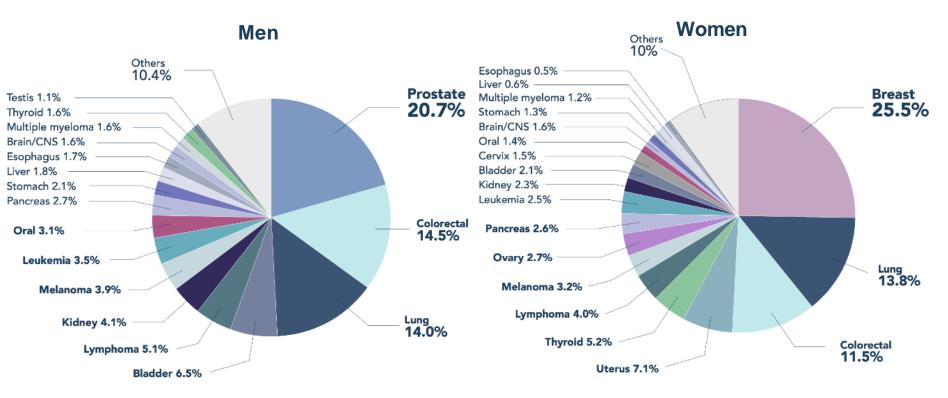
86-Y		Nuclid	$T_{1/2}$	Decay	on reactors or sm $E_{\beta \max}$	β^+		Zγ				on routes	
			-, -	mode	(MeV)	(%)	(MeV)	(%)		ISOLDE		others	
87-Y		85m-Y	4.9 h	β^+, γ	2.3	70	231	33.6	Nb-i	foil target, W-S	[86-Sr (p, 2n) 84-Sr (d, n)	
		86-Y	14.7 h	β^+, γ	1.2	34	637 1077	32.6 82.5	Nb-1	foil target, W-S	[86-Sr (p,n)	
88-Y	149-Gd	87-Y	80.3 h	EC, γ		100	485 388	96 83	Nb-i	foil target, W-S	I	85-Rb (α, 2n) 88-Sr (p, 2n)	
		88 Y	106.6 d	EC, γ			898 1836	94.0 99.4	Nb-i	foil target, W-S	I	Mo, Nb (p, spall) 88-Sr (p, n)	
134-Ce	149 - Tb	134-Ce	75.9 h	EC		100	no g	amma	Ta-f	oil target,		W-SI 132-Ba (α, 2n)	
134 - La		134-La 141-Ce	6.7 m 32.5 4	β^+, γ β^-, γ	2.7 0.6	64 70	605 145	7.6 49.3	U-ca	arbide-target, W	-SI	134-Ce-generator Fission products,	
141-Ce	152-Tb	143-Pr	13.6 d	Neclid	$T_{1/2}$	Decay	E	β max	β^+	E_{γ}		Produ	action routes
	161-Tb	145 11				mode	(1	AeV)	(%)	(MeV)	(%)	ISOLDE	others
43-Pr	157-Dy	138-Nd 138-Pr	5.2 h 1.5 m	149-Gd	9.5 d	EC, γ				149 293	55 26	Ta-foil target, W-SI	147-Sm (α , 2n)
	166-Dy	140-Nd	3.4 d	149-Tb	4.15 h	α, β^+, γ	1.	8	4	165	26 26.9	Ta-foil target, W-SI	141-Pr (12-C, 4n)
.38-Nd		140-Pr 147-Nd	3.4 m 11.1 d	152-Tb	17.5 h	β^+, γ	2.	0	12	352	30.1	Ta-foil target, W-SI	141-Pr (12-C, n)
	165-Er			161-Tb	6.9 d	β^+, γ^- β^-, γ^-	2.		12	74.6	14.0		141-PI (12-C, II) 160-Gd (n, γ) 161-Gd (β^{-}
138-Pr	1 1	142-Sm 142-Pm	72.4 m 40.5 s	157-Dy	8.1 h	EC, γ			100	326	94.5		156-Sm (n, γ)
40-Nd	167-Tm	142-Fiii 153-Sm	40.3 s 46.7 h	166-Dy	81.4 h	β^{-}	0.	5		82.5	12	Ta-foil target, W-SI	164-Dy $(2n, \gamma)$
140-Pr	10/-111	147-Eu		165-Er	10.3 h	EC, Auge	r		100	X-ray o	only	Ta-foil target, W-SI	166-Er (p, 2n) 165-Tm (E 164-Er(n, γ)
47-Nd	169-Yb			167 - Tm	9.25 d	EC, γ			100	207.8	42.0	Ta-foil target, W-SI	Ta (p, Spallation), 165-Ho (α , 2n)
				169-Yb	32.0 d	EC, γ			100	63.5	45	Ta-foil target, W-SI	168-Yb (n, γ)
42-Sm	172-Lu			172-Lu	6.7 d	EC, γ				198 181	40 20.5	Ta-foil target, W-SI	172-Hf generator
142-Pm										1093	62.5	6	0
142-Fm 153-Sm	1 1			177-Lu	6.7 d	β^{-}	0.	5		208	11	(Ta-foil target, W-SI)	176-Yb(n, γ) 177-Yb (

R.M. dos Santos Augusto. Appl. Sci. 2014, 4, 265



- ISOL is a powerful tool to help explore new isotopes
- Continued improvements in target/converter technology, separation efficiency, yields, chemistry
- Elinac production

Concluding Remarks: Small Cyclotron Isotope Production



- Global shift to higher-energy cyclotrons - yesterday: low E (<16 MeV), low current (<100 uA)
 - today: higher E (16 24 MeV), higher
 current (>100 to 1000 uA)
 - Higher specific activity
- New approaches (i.e. salt target)
- Emerging solid target technologies enabling high power (E + μA) irradiation
- Improved handling and processing
- But...some isotopes can not be efficiently made by accelerator (⁶⁰Co, ¹⁹²Ir, ¹²⁵I...)

Going forward, where should we focus our efforts?

- multiple cancer subtypes (ex. 6 different breast cancers)
- different grades and stages of cancer

Canadian Cancer Society 2017 statistics

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba| McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f 🖸 🏏