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Disclaimer
– I am NOT an expert of individual detector technologies. My talk is 

automatically at “colloquium” level for non-experts, just as Jon 
asked speakers by email.

– I will talk about only some highlights (maybe biased), and will not 
cover electronics, triggers, DAQ, and so on.

– My apologies: many important works are not mentioned.
– Many things are taken from slides at various conferences that were 

held in recent years. Sorry and thanks a lot.
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Particle detectors
We want to understand what is happening in particle 
collisions, ideally at the level of Feynman diagrams.
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• Future experiments require 
very challenging detectors in 
many aspects.

• The requirements depend on 
collision types, energies, and 
luminosities.



Challenges of HL-LHC experiments 

4

Maintain physics performance in extremely hard experimental conditions
• Peak luminosity 7.5x1034 cm-2s-1, Integrated luminosity 4 ab-1

High occupancy and pile up
• Average pile up 140 (maximum 200): we will suffer from

– increases of the combinatorial complexity and rate of fake tracks
– extra energy to calorimeter measurements

• Granularity and timing are the keys to mitigate pile-ups
• Improvement of trigger and readout capability is necessary
Radiation damage
• Detector elements and electronics are exposed to high radiation dose (10 x LHC)
• More radiation hardness is required for trackers and endcap/forward detectors



Challenges of future lepton colliders
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Vertex Detector: 
• Excellent IP resolution for efficient b, c jet tagging
• Much smaller pixel size, much less material budget 
Central Tracker: 
• High momentum resolution to reconstruct Higgs recoil mass
• Low material budget, not to degrade calorimeter performance
Calorimetry: 
• High jet-energy resolution to separate W-jets and Z-jets
• A promising solution: high granularity for particle flow algorithm
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3.3.6 Strong EWSB
If strong electroweak symmetry breaking (EWSB) is realised in nature, the study of the
WW-scattering processes is particularly important. At the ILC, the W+W� !W+W� and
W+W� ! ZZ vertices can be probed via the processes e+e� ! ⌫

e

⌫
e

qqqq where the final
state di-jet masses are from the decays of two W-bosons or two Z-bosons. Separating the
two processes through the reconstruction of the di-jet masses provides a test of the jet energy
resolution of the ILD detector.

Strong EWSB can be described by an e↵ective Lagrangian approach in which there are two
anomalous quartic gauge couplings, ↵4 and ↵5 [38] which are identically zero in the SM. The
WW scattering events are generated at

p
s = 1TeV with WHiZard [39] assuming ↵4 = ↵5 =

0. Results are obtained for an integrated luminosity of 1 ab�1 with P (e+, e�) = (+0.3,�0.8).
Event selection cuts, similar to those of [38, 40, 41, 42], reduce the backgrounds from processes
other than the quartic coupling diagrams to ⇠ 20 % of the signal. Of the three possible jet-
pairings, the one which minimises |m

ij

� m
W/Z

| ⇥ |m
kl

� m
W/Z

| is chosen. Figure 3.3-22
shows, for ⌫

e

⌫̄
e

WW and ⌫
e

⌫̄
e

ZZ events, a) the reconstructed di-jet mass distribution, and b)
the distribution of average reconstructed mass, (m

ij

+ m
kl

)/2.0. Clear separation between
the W and Z peaks is obtained.
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FIGURE 3.3-22. a) The reconstructed di-jet mass distributions for the best jet-pairing in selected ⌫e⌫̄eWW
(blue) and ⌫e⌫̄eZZ (red) events at

p
s = 1TeV . b) Distributions of the average reconstructed di-jet mass,

(mij + mB
kl)/2.0, for the best jet-pairing for ⌫e⌫̄eWW (blue) and ⌫e⌫̄eZZ (red) events.

The parameters ↵4 and ↵5 are obtained from a binned maximum likelihood fit to the two-
dimensional distribution (10⇥10 bins) of the boson polar angle in the reference frame of boson
pair and the jet polar angle in the reference frame of each boson, giving �1.38 < ↵4 < +1.10
and �0.92 < ↵5 < +0.77. These sensitivities are slightly tighter than those from a previous
fast simulation study with the TESLA detector concept [41, 42].

3.3.7 Lepton production in SPS1a’
SUSY may provide a rich spectrum of kinematically accessible particles at the ILC oper-
ating at

p
s = 500GeV, for example the production of gauginos and sleptons with masses

below 250 GeV. The signals for new physics consist of a complex mixture of dominant and

ILD - Letter of Intent 49

Z-jets

W-jets

Maximize physics performance in much cleaner experimental conditions
• Moderate radiation level: ~ 100 kRad+1011 neq/cm2 at inner vertex layer (ILC)
--> Pursue ultimate detector performance

x LEP SLC LHC ILC

a [µm] 25 8 12 5

b [µm GeV/c] 70 33 70 10

sIP= a Å b/psin3/2q



Silicon detectors
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Pixel detectors for HL-LHC
• Challenges for pixel detectors

– Radiation hardness (factor 10 x LHC)
– Readout, Trigger, Size, Production cost, …
– Similar approaches by ATLAS and CMS

• Baseline: Classical hybrid pixel detectors with bump bonding
– n-in-p planar sensors: more radiation-hard than p-in-n sensors
– 3D sensors: columnar electrodes inside the sensor bulk: electrode 

distance can be shorter than sensitive detector thickness à more 
tolerance against radiation

• Different pixel sizes being tested: 50x50 µm2 and 25x100 µm2

• Readout chip designed in RD53 collaboration
– TSMC 65 nm CMOS process
– Radiation hardness: 1 Grad, 2x1016 neq/cm2 over 10 years
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Low-Gain Avalanche Diode (LGAD)

LGAD: thin silicon detector with low gain 
multiplication for precise timing measurement 
• High electric field to accelerate electrons for 

multiplication, by highly doped p+ region
• Moderate internal gain to reduce shot noise.
• 4 suppliers: CNM, FBK, HPK, Micron
• Both strip and pad detectors are possible

ATLAS HGTD (High Granularity Timing 
Detector) in front of endcap calorimeter
• 4 LGAD layers with 1.3 x 1.3 mm2 sensor size
• Goal: 30 ps resolution for MIP
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N. Cartiglia

Precision timing of each point along the track can mitigate 
pile-ups
à Use only “time-compatible points” for pattern-recognition



Pixel detectors developed for ILC/CLIC
• Pixel sensors for ILC/CLIC need to have

– Extremely good spatial resolution
– Low material budget 
– Must deal with the special bunch 

structure
• Several technologies under development, 

some are used for real experiments
– FPCCD, DEPFET, CMOS, Chronopix, SOI, 3D

DEPFET
Depleted p-channel Field Effect Transistor 
• Signal electrons accumulate in the internal 

gate (potential minimum) and modulate the 
transistor current

• Belle-II PXD:
– Pixel size ~75x50 µm2

– Material budget 0.21% X0 per layer
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ILC bunch structure

Belle II phase 3
FY2018 ~ 



CMOS pixel sensors
Monolithic Active Pixel Sensors (MAPS)
• sensor and signal processing electronics are 

integrated in a same silicon wafer
• commercial CMOS technologies (low cost)
• granularity: pixels of ~ 10x10 µm2

• material budget: total thickness < 50 µm
• charge collection through thermal diffusion 
• used in EUDET telescope, STAR PXL, ALICE ITS 

upgrade

HV/HR-CMOS sensors under development for 
HL-LHC
• depletion through high voltage (HV) or high 

resistivity (HR) substrate
• charge collection by drift, good for radiation 

tolerance
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SOI and 3D sensors
Next generation technologies
• SOI: Silicon On Insulator

– CMOS circuit fabricated on buried oxide (BOX) 
– CMOS circuit fully isolated from wafer (bulk) silicon
– Fully depleted CMOS sensors possible
– FPIX2 chip with 8 µm pixel size tested at FNAL TB 

à intrinsic spatial resolution < 1 µm achieved for the first time !!
• 3D sensor

– comprised of two or more layers of semiconductor devices, which have 
been thinned, bonded together, and interconnected to form a “monolithic” 
circuit.

– Optimal process can be used for each layer (analog, time stamp, …)
– The move to 3D is driven by industry.
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FPIX2 chip

Interconnection	by	through-silicon	vias (TSV)



MPGD
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Micro Pattern Gaseous Detector

Advantages of MPGDs (as 2D gas amplifiers)
• High rate capability
• High space resolution
• Good timing resolution
• Good energy resolution
• Radiation hardness
and
• Ion Back Flow reduction
• Photon feedback reduction
Limitations
• Production not trivial
• Sparks at high gain 

Several technologies under 
Development
• MicroMEGAS
• GEM
• Thick-GEM
• µ-PIC
• Ingrid
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GEM
2x106 Hz/mm2

MicroMEGAS
sspace~15-40 µm

stime ~ few ns

GEM

• In general, gaseous detectors are cost-effective, capable of covering a large 
area, and operating stably over a broad range of conditions
– Widely used: MWPC, Drift Chambers, RPC, …

Spatial resolutionRate capability

Energy resolutionTime resolution



MicroMEGAS and GEM
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GEM (Gas Electron Amplifier)
• Two copper foils on both sides of 

kapton layer of ~ 50 µm thick
• Amplification at the holes
• Readout by anode pads/strips
• Usually used in multi-layers at 

low gain, to dramatically reduce 
the spark rate

MicroMEGAS
• Micromesh with pitch 50-100 µm
• Gap height 50-100 µm

– must be uniform
• Amplification at in the gap
• Sparks are present at high gain, 

but manageable



MPGD for muon detectors 

• GEM will be used in the 
Phase-II CMS muon system
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MicroMEGAS will be used for New 
Small Wheels of ATLAS muon system
• 1200 m2 total detector surface, 
• Operational at rate > 15 kHz/cm2, 
• spatial resolution <100 µm

CMS GEM chamber



MPGD for TPC endplate
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ALICE TPC upgrade (GEM)
• Continuous readout for 50 kHz Pb-Pb

collisions without using gate-grid
• Replace MWPC with 4-GEM to limit space 

charge effects
• Maintain physics requirements:

Ion Back Flow < 1%, s(E)/E<12% for 55Fe

T2K TPC (MicroMEGAS) 
• The first large TPC using MPDG
• Spatial resolution: 0.6 mm
• dE/dx: 7.8% for MIP

LC-TPC R&D (MicroMEGAS, GEM, Ingrid) 
• Large TPC prototype with versatile endplate
• Several test beam campaigns at DESY

GEM

MicroMEGAS

Ingrid

Standard GEM Large pitch GEM



Gating GEM for LC-TPC
ILC has a special bunch structure (5 Hz, 1ms 
bunch train)
• 3 disks of IBF may slowly move from anode to 

cathode à distortion of the electric field
• IBF must be completely blocked (<0.01%) 

to achieve spatial resolution < 100 µm
Gating GEM above the MPGD is developed
• High electron transparency (> 80 %) when the 

gate is OPEN.
• High blocking power for positive ions when the 

gate is CLOSED.
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Fujikura Ltd.



Photon sensors
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Silicon Photomultiplier
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• Invented in Russia, called as SiPM, MPPC, 
PPD, now produced worldwide

• Operate many small APDs in Geiger mode 
and gang the outputs.

• Properties
– High gain ~ 106 at low HV (50~70 V)
– Photon counting capability
– Fast timing: st(1g)~100 ps
– Insensitive to magnetic field
– Compact, low cost
– Dynamic range restricted by number of 

pixels
– High dark rate /cross talk

• Already widely used for many applications
• This device is still new and improving

– Significant reduction of dark rate / 
crosstalk

– Smaller pixel pitch à more dynamic range
– VUV sensitive à application extended to 

liquid Xe calorimeter

MEG II
liquid Xe
12	x	12	mm2

50	µm	pitch

NEW

OLD

PMTSiPM (MPPC)



Long-lived MCP-PMT
MCP-PMT is similar to ordinary PMT, with dynode 
replaced by MCP (MicroChannel Plate)
Advantages
• Gain ~ 106, single photon counting
• Small thickness, high fieldà tts ~ 50 ps or less
• Operational in magnetic field (B ~ 1.5 T)
Used for many Cherenkov/TOF detectors
• Belle-II TOP, LHCb TORCH, PANDA DIRC, EIC 

DIRC, …
Weakness: Ageing of the photo-cathode, where 
QE is degraded by the gas/ion desorbed from large 
surface of MCP. To reduce the effect: 
1. Block the gas/ion from reaching the photocathode

– Conventional MCP-PMT
2. Suppress outgassing from MCP by coating

– ALD (Atomic Layer Deposition) MCP-PMT
3. Reduce residual gas on MCP

– Life-extended ALD MCP-PMT
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Life-extended ALD (YH0205)

ALD (KT0074)

Conventional (XM0267)

Measurement of Nagoya group



PFA calorimetry
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Particle flow approach
PFA uses best energy measurement for each
particle to reconstruct jet energy with no overlaps:
• Charged tracks (~60%)

à tracker: σ1/pT ≈ 2 x 10-5 (GeV)
• Photons (~30%)

à ECAL: σE/E ≈ 15% / √E (GeV)
• Neutral hadrons (~10%) à HCAL: σE/E ≈ 

60% / √E (GeV)
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It is essential to separate calorimeter clusters at particle level
à Calls for highly granular calorimeters



Granularity is the key
Jet energy resolution

(sjet)2=(stracks)2+(sECAL)2+(sHCAL)2

+(sloss)2+(sconfusion)2

Confusion term originates from overlap of 
shower clusters in calorimeter

Material for absorbers
• ECAL: Tungsten 
• HCAL: Steel or Tungsten
Thin active layers 
• Sensor and frontend electronics integrated

Optimized granularity (cell size) for ILC
• ECAL ~ 0.5x0.5 cm2

• HCAL ~ 3x3 cm2 (analog readout)
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From M.A. Thomson
Nucl. Instrum. Meth. A611 (2009) 25. 

Resolution vs ECAL cell size

Resolution vs HCAL cell size

S. Green
LCWS15



High granularity ECAL
• Each module = carbon-fiber + W 

structure with alveoli where detector 
elements (slabs) slide in.

• Slab = Si matrices of PIN diodes (5 x 
5 mm2)  glued to PCB with embedded 
electronics (SKIROC) on both sides of 
W wrapped into carbon fiber.

• Alternative idea is to use scintillator 
strips with SiPM readout for sensitive 
layers

• SiD ECAL will use highly segmented 
hexagonal Si sensors with readout by 
KPiX ASIC  
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Silicon pad Sci. strip

MPPC



High granularity HCAL
Two promising approaches have been studied by CALICE
• Analog HCAL

– Active layer: scintillator tiles (3x3 cm2) readout 
using SiPM

– Readout ASIC: SPIROC (OMEGA)
– Physics prototype demonstrated performance
– (ILD, SiD, CLIC)

• (Semi-)Digital HCAL
– RPC with 1x1 cm2 pads, with digital (1-bit) or 

semi-digital (2-bit) readout
– Other detector options: MicroMEGAS, GEM, THGEM
– Readout ASIC: HARDROC (OMEGA)

• Physics prototypes validated the concept and 
demonstrated performance

• Technological prototypes demonstrate scalability to the 
full detector
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AHCAL unit

RPC for SDHCAL



Application to HL-LHC calorimetry
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• CMS endcap ECAL and HCAL need to be 
replaced endue to radiation damage at HL-LHC
– Radiation tolerant
– Good timing resolution
– Tracking capability (shower reconstruction)

• CMS will use HGCAL: inspired by the 
technologies developed by CALICE for a long 
time (a good example of synergy between 
hadron and lepton collider experiments)



Summary
• Future experiments require improved detector technologies

– Better spatial and timing resolutions
– Tolerance against high rate and high radiation dose
– Large coverage at low cost

• Significant advances have been made for various detector technologies, 
for specific experiments, and for general use in HEP and other fields.

• Development of detector technologies requires substantial investment 
(manpower, budget).

• The market in HEP is not large. Detector development may be 
accelerated if we could find more good applications in other fields à
Marcel’s talk
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Thank you for your attention !!


