Detector developments

ICFA Seminar Ottawa, November 2017

Kiyotomo Kawagoe

KYUSHU UNIVERSITY

Contents

- Introduction
- Silicon detectors
- Micro pattern gaseous detectors (MPGD)
- Photon sensors
- Particle Flow calorimetry
- Summary

Disclaimer

- I am NOT an expert of individual detector technologies. My talk is automatically at "colloquium" level for non-experts, just as Jon asked speakers by email.
- I will talk about only some highlights (maybe biased), and will not cover electronics, triggers, DAQ, and so on.
- My apologies: many important works are not mentioned.
- Many things are taken from slides at various conferences that were held in recent years. Sorry and thanks a lot.

Particle detectors

We want to understand what is happening in particle collisions, ideally at the level of Feynman diagrams.

- Future experiments require very challenging detectors in many aspects.
- The requirements depend on collision types, energies, and luminosities.

Radiation hardness

Readout speed

Material budget

Challenges of HL-LHC experiments

Maintain physics performance in extremely hard experimental conditions

Peak luminosity 7.5x10³⁴ cm⁻²s⁻¹, Integrated luminosity 4 ab⁻¹

High occupancy and pile up

- Average pile up 140 (maximum 200): we will suffer from
 - increases of the combinatorial complexity and rate of fake tracks
 - extra energy to calorimeter measurements
- Granularity and timing are the keys to mitigate pile-ups
- Improvement of trigger and readout capability is necessary

Radiation damage

- Detector elements and electronics are exposed to high radiation dose (10 x LHC)
- More radiation hardness is required for trackers and endcap/forward detectors

Challenges of future lepton colliders

Maximize physics performance in much cleaner experimental conditions

• Moderate radiation level: $\sim 100 \text{ kRad} + 10^{11} \text{ n}_{eq}/\text{cm}^2$ at inner vertex layer (ILC)

--> Pursue ultimate detector performance

σ_{IP} = $\mathbf{a} \oplus \mathbf{b}/p \sin^{3/2} \theta$

Vertex Detector:

- Excellent IP resolution for efficient b, c jet tagging
- Much smaller pixel size, much less material budget

Central Tracker:

- High momentum resolution to reconstruct Higgs recoil mass
- Low material budget, not to degrade calorimeter performance

Calorimetry:

- High jet-energy resolution to separate W-jets and Z-jets
- A promising solution: high granularity for particle flow algorithm

a [um]

b [um GeV/c]

Silicon detectors

Pixel detectors for HL-LHC

- Challenges for pixel detectors
 - Radiation hardness (factor 10 x LHC)
 - Readout, Trigger, Size, Production cost, ...
 - Similar approaches by ATLAS and CMS
- Baseline: Classical hybrid pixel detectors with bump bonding
 - n-in-p planar sensors: more radiation-hard than p-in-n sensors
 - 3D sensors: columnar electrodes inside the sensor bulk: electrode distance can be shorter than sensitive detector thickness → more tolerance against radiation

- Different pixel sizes being tested: 50x50 μm² and 25x100 μm²
- Readout chip designed in RD53 collaboration
 - TSMC 65 nm CMOS process
 - Radiation hardness: 1 Grad, $2x10^{16}$ n_{eq}/cm^2 over 10 years

Low-Gain Avalanche Diode (LGAD)

Precision timing of each point along the track can mitigate pile-ups

→ Use only "time-compatible points" for pattern-recognition

LGAD: **thin** silicon detector with **low gain** multiplication for **precise timing** measurement

- High electric field to accelerate electrons for multiplication, by highly doped p+ region
- Moderate internal gain to reduce shot noise.
- 4 suppliers: CNM, FBK, HPK, Micron
- Both strip and pad detectors are possible

ATLAS HGTD (High Granularity Timing Detector) in front of endcap calorimeter

- 4 LGAD layers with 1.3 x 1.3 mm² sensor size
- Goal: 30 ps resolution for MIP

Pixel detectors developed for ILC/CLIC

- Pixel sensors for ILC/CLIC need to have
 - Extremely good spatial resolution
 - Low material budget
 - Must deal with the special bunch structure
- Several technologies under development, some are used for real experiments
 - FPCCD, DEPFET, CMOS, Chronopix, SOI, 3D

DEPFET

Depleted p-channel Field Effect Transistor

- Signal electrons accumulate in the internal gate (potential minimum) and modulate the transistor current
- Belle-II PXD:
 - Pixel size \sim 75x50 μ m²
 - Material budget 0.21% X₀ per layer

CMOS pixel sensors

Monolithic Active Pixel Sensors (MAPS)

- sensor and signal processing electronics are integrated in a same silicon wafer
- commercial CMOS technologies (low cost)
- granularity: pixels of $\sim 10x10 \ \mu m^2$
- material budget: total thickness < 50 μm
- charge collection through thermal diffusion
- used in EUDET telescope, STAR PXL, ALICE ITS upgrade

HV/HR-CMOS sensors under development for HL-LHC

- depletion through high voltage (HV) or high resistivity (HR) substrate
- charge collection by drift, good for radiation tolerance

Monolithic = front-end electronics on same substrate as active sensor

SOI and 3D sensors

Next generation technologies

- SOI: Silicon On Insulator
 - CMOS circuit fabricated on buried oxide (BOX)
 - CMOS circuit fully isolated from wafer (bulk) silicon
 - Fully depleted CMOS sensors possible
 - FPIX2 chip with 8 μm pixel size tested at FNAL TB

FPIX2 chip

3D sensor

- comprised of two or more layers of semiconductor devices, which have been thinned, bonded together, and interconnected to form a "monolithic" circuit.
- Optimal process can be used for each layer (analog, time stamp, ...)
- The move to 3D is driven by industry.

(X-ray, Electron, Alpha, Charged Particles, ...)

MPGD

Micro Pattern Gaseous Detector

- In general, gaseous detectors are cost-effective, capable of covering a large area, and operating stably over a broad range of conditions
 - Widely used: MWPC, Drift Chambers, RPC, ...

Advantages of MPGDs (as 2D gas amplifiers)

- High rate capability
- High space resolution
- Good timing resolution
- Good energy resolution
- Radiation hardness and
- Ion Back Flow reduction
- Photon feedback reduction

Limitations

- Production not trivial
- Sparks at high gain

Several technologies under Development

- MicroMEGAS
- GEM
- Thick-GEM
- μ-PIC
- Ingrid

MicroMEGAS and GEM

MicroMEGAS

- Micromesh with pitch 50-100 μm
- Gap height 50-100 μm
 - must be uniform
- Amplification at in the gap
- Sparks are present at high gain, but manageable

GEM (Gas Electron Amplifier)

- Two copper foils on both sides of kapton layer of $\sim 50~\mu m$ thick
- Amplification at the holes
- Readout by anode pads/strips
- Usually used in multi-layers at low gain, to dramatically reduce the spark rate

MPGD for muon detectors

 GEM will be used in the Phase-II CMS muon system

CMS GEM chamber

MicroMEGAS will be used for New Small Wheels of ATLAS muon system

- 1200 m² total detector surface,
- Operational at rate > 15 kHz/cm²,
- spatial resolution <100 μm

MPGD for TPC endplate

T2K TPC (MicroMEGAS)

- The first large TPC using MPDG
- Spatial resolution: 0.6 mm
- dE/dx: 7.8% for MIP

LC-TPC R&D (MicroMEGAS, GEM, Ingrid)

- Large TPC prototype with versatile endplate
- Several test beam campaigns at DESY

Ingrid

ALICE TPC upgrade (GEM)

- Continuous readout for 50 kHz Pb-Pb collisions without using gate-grid
- Replace MWPC with 4-GEM to limit space charge effects
- Maintain physics requirements:
 Ion Back Flow < 1%, σ(E)/E<12% for ⁵⁵Fe

Large pitch GEM

Gating GEM for LC-TPC

ILC has a special bunch structure (5 Hz, 1ms bunch train)

- 3 disks of IBF may slowly move from anode to cathode → distortion of the electric field
- IBF must be completely blocked (<0.01%) to achieve spatial resolution < 100 μm

Gating GEM above the MPGD is developed

- High electron transparency (> 80 %) when the gate is OPEN.
- High blocking power for positive ions when the gate is CLOSED.

Photon sensors

Silicon Photomultiplier

- Invented in Russia, called as SiPM, MPPC, PPD, now produced worldwide
- Operate many small APDs in Geiger mode and gang the outputs.
- Properties
 - High gain $\sim 10^6$ at low HV (50 \sim 70 V)
 - Photon counting capability
 - Fast timing: $\sigma_t(1\gamma) \sim 100$ ps
 - Insensitive to magnetic field
 - Compact, low cost
 - Dynamic range restricted by number of pixels
 - High dark rate /cross talk
- Already widely used for many applications
- This device is still new and improving
 - Significant reduction of dark rate / crosstalk
 - Smaller pixel pitch → more dynamic range
 - VUV sensitive → application extended to liquid Xe calorimeter

MEG II liquid Xe 12 x 12 mm² 50 μm pitch

Trigger [p.e.]

Long-lived MCP-PMT

MCP-PMT is similar to ordinary PMT, with dynode replaced by MCP (MicroChannel Plate)

Advantages

- Gain ~ 10⁶, single photon counting
- Small thickness, high field → tts ~ 50 ps or less
- Operational in magnetic field (B ~ 1.5 T)

Used for many Cherenkov/TOF detectors

 Belle-II TOP, LHCb TORCH, PANDA DIRC, EIC DIRC, ...

Weakness: Ageing of the photo-cathode, where QE is degraded by the gas/ion desorbed from large surface of MCP. To reduce the effect:

- 1. Block the gas/ion from reaching the photocathode
 - Conventional MCP-PMT
- 2. Suppress outgassing from MCP by coating
 - ALD (Atomic Layer Deposition) MCP-PMT
- 3. Reduce residual gas on MCP
 - Life-extended ALD MCP-PMT

PFA calorimetry

Particle flow approach

PFA uses best energy measurement for each particle to reconstruct jet energy with no overlaps:

- Charged tracks (~60%)
 - \rightarrow tracker: $\sigma_{1/pT} \approx 2 \times 10^{-5}$ (GeV)
- Photons (~30%)
 - \rightarrow ECAL: σ_E /E ≈ 15% / \sqrt{E} (GeV)
- Neutral hadrons (~10%) → HCAL: σ_E/E ≈ 60% / √E (GeV)

It is essential to separate calorimeter clusters at particle level

-> Calls for highly granular calorimeters

Granularity is the key

Jet energy resolution

$$(\sigma_{\text{jet}})^2 = (\sigma_{\text{tracks}})^2 + (\sigma_{\text{ECAL}})^2 + (\sigma_{\text{HCAL}})^2 + (\sigma_{\text{loss}})^2 + (\sigma_{\text{confusion}})^2$$

Confusion term originates from overlap of shower clusters in calorimeter

Material for absorbers

- **ECAL:** Tungsten
- **HCAL**: Steel or Tungsten

Thin active layers

Sensor and frontend electronics integrated

Optimized granularity (cell size) for ILC

- ECAL $\sim 0.5 \times 0.5 \text{ cm}^2$
- $HCAL \sim 3x3 \text{ cm}^2 \text{ (analog readout)}$

Nucl. Instrum. Meth. A611 (2009) 25.

High granularity ECAL

- Each module = carbon-fiber + W structure with alveoli where detector elements (slabs) slide in.
- Slab = Si matrices of PIN diodes (5 x 5 mm²) glued to PCB with embedded electronics (SKIROC) on both sides of W wrapped into carbon fiber.
- Alternative idea is to use scintillator strips with SiPM readout for sensitive layers
- SiD ECAL will use highly segmented hexagonal Si sensors with readout by KPiX ASIC

High granularity HCAL

Two promising approaches have been studied by CALICE

Analog HCAL

- Active layer: scintillator tiles (3x3 cm²) readout using SiPM
- Readout ASIC: SPIROC (OMEGA)
- Physics prototype demonstrated performance
- (ILD, SiD, CLIC)

(Semi-)Digital HCAL

- RPC with 1x1 cm² pads, with digital (1-bit) or semi-digital (2-bit) readout
- Other detector options: MicroMEGAS, GEM, THGEM
- Readout ASIC: HARDROC (OMEGA)
- Physics prototypes validated the concept and demonstrated performance
- Technological prototypes demonstrate scalability to the full detector

RPC for SDHCAL

Application to HL-LHC calorimetry

- CMS endcap ECAL and HCAL need to be replaced endue to radiation damage at HL-LHC
 - Radiation tolerant
 - Good timing resolution
 - Tracking capability (shower reconstruction)

 CMS will use HGCAL: inspired by the technologies developed by CALICE for a long time (a good example of synergy between hadron and lepton collider experiments)

6 million Silicon channels ≈ 600 m² ≈ 3× CMS Tracker 0.5 and 1 cm² cell sizes

Mixed layers in hadronic part ≈ 500 m² Plastic scintillator On-tile SiPM

Summary

- Future experiments require improved detector technologies
 - Better spatial and timing resolutions
 - Tolerance against high rate and high radiation dose
 - Large coverage at low cost
- Significant advances have been made for various detector technologies, for specific experiments, and for general use in HEP and other fields.
- Development of detector technologies requires substantial investment (manpower, budget).
- The market in HEP is not large. Detector development may be accelerated if we could find more good applications in other fields → Marcel's talk

Thank you for your attention !!