ILC Update

KEK/LCC Shin MICHIZONO

- The ILC
- Why ILC?
- ILC area systems
 - Sources
 - Damping ring
 - Main linac
 - Final focus
- Industrialization
 - SRF accelerators in the world
- *Recent status including "cost reduction"*

ILC Acc. Design Overview (in TDR)

2017 ICFA seminar (Nov. 8, 2017)

Important Energies in ILC

125 GeV Higgs discovery reinforcing the ILC importance

The Standard Model

Why collider?

Center of Mass Energy (Ecm) = discovery reach

Fixed Targets

Colliders

We must collide the beams ,,,,, efficiently,,,,,

Why linear accelerator?

• Synchrotron radiation

- Circulating beam loses energy
- Energy loss per turn is

– proportional to 4th power of γ

Example: 210GeV (LEP) -> 250GeV

ΔE becomes twice.

Linear accelerators are cheaper for higher energy

Why electron-positron?

LCC organization from Dec. 2016

ILC schematic

ILC Update

KEK/LCC Shin MICHIZONO

- The ILC
- Why ILC?
- ILC area systems
 - Sources
 - Damping ring
 - Main linac
 - Final focus
- Industrialization
 - SRF accelerators in the world
- Recent status including "cost reduction"

ILC area systems

2017 ICFA seminar (Nov. 8, 2017)

Technology of the ILC

bunch, consisting of $^{10^{10}}$ e+/e-

- Creating particles Sources \bullet
 - polarized elections/positrons
- High quality beams **Damping ring**
 - Low emittance beams
 - Small beam spread (small beam size)
 - Small momentum spread (parallel beam)
- Acceleration

Main linac

- superconducting radio frequency (SRF)
- Getting them collided *Final focus*
 - nano-meter beams

Beam sources -electron/positron-

Polarized electron beams

$$P \equiv \frac{N_L - N_R}{N_L + N_R} > 0.8$$

Undulator* positron source

Need to be created via pair (e-/e+) production process

*Undulator is the insertion device (where the static magnetic field alternates) and produces γ ray

150 GeV e-, 150 m long undulator @ILC

2017 ICFA seminar (Nov. 8, 2017)

ILC area systems

Damping ring

e-/e+ beam will be focused down to a few nm at the IP. Preparation of the high quality beams to make it possible

ILC area systems

Beam acceleration by radio frequency

If period of the "radio frequency" is synchronized with the electron movement in the "cell", electrons can be accelerated continuously.

RF field inside the superconducting rf cavity

2K liquid He

Rotating magnetic field

Electric field on center axis

Rf input coupler to transmit the rf power to the cavity

17

2017 ICFA seminar (Nov. 8, 2017

©Rey.Hori

Accelerator Complex

ILC area systems

nano beams at interaction point (IP)

Final Focus system has been developed at ATF/ATF2 in KEK

ATF/ATF2: Accelerator Test Facility@KEK

Nanometer beam technologies for ILC has been developed at ATF/ATF2

Key of the luminosity maintenance 6 nm beam at IP (ILC)

ATF2: Final Focus Test Beamline

Establish the ILC final focus method with same optics and comparable beamline

tolerances

1.3 GeV S-band Electron LINAC (~70m)

Damping Ring (~140m) Low emittance electron beam

Progress in final focus beam at ATF2

ATF2 Goal : **37** nm → ILC **6** nm
Achieved **41 nm** (2016)

ILC Update

KEK/LCC Shin MICHIZONO

- The ILC
- Why ILC?
- ILC area systems
 - Sources
 - Damping ring
 - Main linac
 - Final focus

Industrialization

- SRF accelerators in the world
- *Recent status including "cost reduction"*

SCRF Industrialization required for ILC

Major Accelerators Under Construction 2010 ~

Project	Notes	# cavities
CEBAF-JLAB (US)	Upgrade 6.5 GeV => 12 GeV electrons	80
XFEL-Hamburg (EU)	18 GeV electrons – for Xray Free Electron Laser – Pulsed)	840
LCLS-II – SLAC (US)	4 GeV electrons –CW XFEL (Xray Free Electron Laser)	300
SPIRAL-II (France)	30 MeV, 5 mA protons -> Heavy Ion	28
FRIB – MSU 8US)	500 kW, heavy ion beams for nuclear astrophys	340
ESS (Sweden)	1 – 2 GeV, 5 MW Neutron Source ESS - pulsed	150
PIP-II–Fermilab (US)	High Intensity Proton Linac for Neutrino Beams	115
ADS- (China, India)	R&D for accelerator drive system	> 200
Globally Int. Effort		> 2000

SRF accelerators in the world

European XFEL

XFEL Linear Accelerator

LINAC 2016 – September 2016 Hans Weise, DESY 2017 ICFA seminar (Nov. 8, 2017)

Cavity performance

Requirements of cavity gradient Vertical test (individual test): >35MV/m Cryomodule test: >31.5MV/m

FNAL example: cryomodule test 31.5MV/m

E. Harms, TTC2014

Fermilab: CM2 reached <31.5 MV/m >

CERN Courier December 2014

2017 ICFA seminar (Nov. 8, 2017)

A breakthrough for Higher acc. gradient

ILC SRF Global Integration Model

ILC Update

KEK/LCC Shin MICHIZONO

- The ILC
- Why ILC?
- ILC area systems
 - Sources
 - Damping ring
 - Main linac
 - Final focus
- Industrialization
 - SRF accelerators in the world

Recent status including "cost reduction"

ILC Time Line: Progress and Prospect

US-Japan cost reduction R&D

Cost reduction by technological innovation

Innovation of Nb (superconducting) material process: decrease in material cost

Innovative surface process for high efficiency cavity (N-infusion): decrease in number of cavities

Thank you for your attention