



# **Axion Dark Matter**

International Committee for Future Accelerator (ICFA) 2017.11.06~09, Ottawa, Canada

SungWoo YOUN Young Scientist Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS)





- Introduction
- Axion Detection Philosophy
- Strategies for Axion Search
  - Laser searches
  - Solar axion searches
  - Cosmic axion searches
  - Future Prospects
    - Summary



# Introduction

- Strong-CP problem
  - Lack of CP violation in strong interaction
  - $nEDM \sim 10^{-26} ecm => \theta_{QCD} \sim 10^{-10}$
- Peccei-Quinn theory (1977)
  - Appealing solution to the strong CP problem
  - A new global symmetry,  $U(1)_{PQ}$ , with a scalar field permeating all space
  - Spontaneous (explicit) PQ symmetry breaking => new Goldstone boson: axion
  - Similar to Higgs mechanism
- Candidate for CDM (µeV~meV) invisible

| Axion properties |             |                                                     |                          |  |  |  |  |  |  |
|------------------|-------------|-----------------------------------------------------|--------------------------|--|--|--|--|--|--|
| Interaction      | Gravity, EM | Mass                                                | µeV to eV                |  |  |  |  |  |  |
| С                | 0           | $ ho_{local}$                                       | 0.45 GeV/cm <sup>3</sup> |  |  |  |  |  |  |
| JP               | 0-          | $eta \sim 10^{-3}  ightarrow 	extsf{Q}_a \sim 10^6$ |                          |  |  |  |  |  |  |



3







- Primakoff effect
  - Pseudoscalar production by a photon scattering off EM fields
  - $\gamma\gamma \rightarrow \pi^0$ ,  $\eta$ , ...
- Reverse Primakoff effect
  - Conversion of axions into photons in the presence of magnetic fields
    - $a \rightarrow \gamma \gamma$  (cf.  $\pi^0 \rightarrow \gamma \gamma$ )
  - Most promising technique for the faintest axion-photon coupling
  - P. Sikivie's method (1983)
    - Enhanced in a EM resonator
    - Principle of haloscope







Axion conversion power



Signal-to-Noise Ratio



Cryogenics SQUID amplifier To RF Receiver SQUID washer Josephson junction High Q tunable cavity High field SC magnet Primakoff Effect



Scan Rate

TITUTE OF SCIE

KAIST



- Laser searches
  - Magneto-optical vacuum effect
    - PVLAS (Italy) claimed signal in 2006
  - Light shining through walls
- Solar axion searches: helioscope
  CAST
- Cosmic axion searches: haloscope
  - ADMX, HAYSTAC, CULTASK, ...
- Others
  - Spin precession
    - GNOME, ARIADNE (NMR)









6



# Current Experimental Status



ΚΔΙΣΤ

# Light Shining through Walls



SungWoo YOUN

GammeV (FNAL)

Saw no events in 2008



- Any Light Particle Search (DESY)
  - ALPS I set constraints in 2010
  - ALPS II upgrade
    - F-P optical resonators / longer detectors / Hera dipole magnets
- Optical Search for QED vacuum birefringence Axion photon Regeneration (CERN)
  - Found no signal (2014) and continue to run
- Search for wide range sub-eV particles

TITUTE OF SCIEN

ΚΔΙΣΤ

# Solar Axion Search





X-ray to axion in the Sun's core

Axion to X-ray in a magnetic field

- CERN Axion Solar Telescope
  - Searching for solar axion (X-ray)
    - 9 m / 9 T LHC prototype dipole magnet
  - Final result in 2017
    - Nature Physics 13 584

### CAST-CAPP

- CAST helioscope to axion haloscope
- QCD axion with rectangular cavities
- Target axion mass 20~30 μeV









# **Cosmic Axion Searches**

- Axion Dark Matter eXperiment
  - 30 years of history (UW)
  - 9 T magnet / 200 L cavity
  - Gen 2 sensitive to DSVZ at 1~40 μeV
- Haloscope At Yale Sensitive To Axion Cold dark matter
  - ADMX-HF (Yale)
  - 9 T magnet / 2 L cavity / JPA
  - Recent results at 24 µeV
- CAPP Ultra Low Temperature Axion Search in Korea
  - Axion research program in Korea
  - Six (5+1) dilution refrigerators
  - Two 8 T (5", 6") magnets / one 18 T (3") magnet in hand
  - 25 T (4") magnet / 12 T (12.5") magnet in 2 years
  - Simultaneous runs at different frequencies









#### Josephson Parametric Amplifier



#### Microwave Cavity (copper)





<sup>3</sup>He/<sup>4</sup>He Dilution Refrigerator

# Image: A constrained of the second second

#### 9.4 Tesla, 10 Liter Magnet



First result from a microwave cavity axion search at 24 µeV





# 7 Low vibration pads





SungWoo YOUN

#### SQUID / MSA





Split cavity



STITUTE OF SCIEN

# Center for Axion and Precision Physics Research

- Launched in 2013 / inauguration in 2017 (last week)
- Various programs for fundamental physics
  - Axion experiments

**IBS-CAPP** 

- CULTASK
- CAST-CAPP
- GNOME / ARIADNE
- Precision physics
  - pEDM / g-2 experiments



CAPP Inauguration



#### IBS conference on Dark World



#### Axion Dark Matter







Magnet delivered in Aug. 2017





SungWoo YOUN

•

Detector assembly in early 2018

**GNOME** 



## Global Network of Optical Magnetometers for Exotic physics

- Scalar field potential gradient induces domain walls
- Interaction with atomic spin to exert brief torque



- Optical magnetometers
  - Cs, Rb, He gas
  - Pol. AM pump beam / probe beam
  - Sensitivity: ~ 100 fT/√Hz







- Global network
  - 14 stations
  - GPS time synchronization
  - First science network run in Nov. 2017



Proposal of storage ring pEDM experiment at CERN

$$\frac{ds}{dt} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E} = \vec{s} \times (\vec{\omega}_{g-2} + \vec{\omega}_{edm})$$
$$\vec{\omega}_{g-2} = -\frac{e}{m} \left[ a\vec{B} - \left( a - \left( \frac{m}{p} \right)^2 \right) \frac{\vec{\beta} \times \vec{E}}{c} \right], \quad \vec{\omega}_{edm} = -\frac{e}{m} \left[ \frac{\eta}{2} \left( \frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right]$$

At p=m/√a (magic momentum), spin freezes to the momentum
pEDM ~ 10<sup>-29</sup> ecm (cf. nEDM ~ 10<sup>-26</sup> ecm)

- Axion coupling with gluons induces oscillating EDM in nucleons  $a(t) = a_0 \cos(\omega_a t) \implies d(t) = d_{DC} + d_{AC} \cos(\omega_a t + \phi_x)$
- Resonance at  $\omega_{g-2} = \omega_a$
- Amplitude stacks up with time
- Deutron (E field) and proton (B field)
- Sensitive to pEDM ~ 10<sup>-31</sup> ecm
- Probe axion frequency 0.1 kHz ~100 MHz

arXiv:1710.05271







# Future R&D

- Design for high frequency
  - Higher resonant modes
    - ex) distributed bragg reflector cavities
  - Single mode isolation
    - ex) photonic band gap
- Design for large volume
  - Toroidal geometry
  - Multiple-cavity detector



Tokamak







18

Photonic band gap

- Noise reduction
  - Squeezed state receiver
  - Single photon detection



Quantum squeezing

 $\sim 100 \text{ m}$ 



# **Continuing / New Experiments**

Laser

- Laser searches
  - ALPS II with upgrades
- Solar axion searches
  - International AXion Observatory
    - Extension of CAST philosophy
- Cosmic axion searches
  - ADMX, HAYSTAC, CULTASK
    - Probing 1~40 µeV down to DSVZ
  - MADMAX
    - High mass region (up to 400 μeV)
- Others
  - Spin precession: GNOME, ARIADNE, CASPER
  - Storage ring, ...



 $\sim 100 \text{ m}$ 



Detector

SINSTITUTE OF SCIEN

ΚΔΙΣΤ



# **Future Prospective**



#### KAIST 1971 1971 1971



- Axion is a highly-motivated solution to the long-lasting puzzles in HEP and cosmology
  - Strong-CP problem / dark matter
- Plenty of excellent project proposals and technical ideas
  - To cover large mass ranges and increase sensitivity
- Future plans require
  - Interdisciplinary R&D activities
  - Table-top experiments to large scale experiments
  - Collaborative works become more crucial
- Significant progresses expected in the near future

Axion Dark Matter







# IBS-CAPP (T and B)



| Refrigerators     |          |                  |                         |          | Magnets                 |          |                    |          |
|-------------------|----------|------------------|-------------------------|----------|-------------------------|----------|--------------------|----------|
| Manufacturer      | Model    | Install<br>ation | Usage                   | Location | Strength &<br>Bore size | Material | Manufacturer       | Delivery |
| BlueFors<br>(BF3) | LD400    | 2016             | RF and<br>Cavity test   | RF room  |                         |          |                    |          |
| BlueFors<br>(BF4) | LD400    | 2016             | JPA & RF chain<br>test  | RF room  |                         |          |                    |          |
| Janis             | HE3      | 2017             | Magnet<br>test          | LVP 4    | 9T<br>12 cm             | NbTi     | Cryo-<br>Magnetics | 2017     |
| BlueFors<br>(BF5) | LD400    | 2017             | Axion Exp<br>DAQ & RF   | LVP 6    | 8T<br>16.5 cm           | NbTi     | AMI                | 2016     |
| BlueFors<br>(BF6) | LD400    | 2017             | Axion Exp<br>Large bore | LVP 7    | 8T<br>12 cm             | NbTi     | AMI                | 2017     |
| Leiden            | DRS1000  | 2017             | Axion Exp               | LVP 3    | 25T<br>10 cm            | HTS      | BNL/CAPP           | 2019     |
| Oxford            | Kelvinox | 2017             | Axion Exp               | LVP2     | 12T<br>32 cm            | NbSn     | Oxford             | 2019     |

#### KAIST 1971 1971 1971



- Axion Resonant InterAction Detection Experiment
  - Axion-mediated spin-dependent force using NMR
    - Segmented rotating mass (W) sources axion field gradient
    - Effective magnetic field driving spin precession in the NMR mediun (polarized He<sub>3</sub>)

$$U_{sp}(r) = \frac{\hbar^2 g_s g_p}{8\pi m_f} (\frac{1}{\lambda_a r} + \frac{1}{r^2}) e^{-\frac{r}{\lambda_a}} (\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{r}})$$

- Collaborative work
  - IN/NV (US) & CAPP (Korea)



#### Probing wide range QCD axion

- 1 µeV ~ 10 meV
- Independent of cosmological assumptions
- Experimental challenges
  - SC magnetic shield (B~10<sup>-19</sup> T)

