Detecting Weakly Interacting Massive Particle (WIMP) Dark Matter

Jodi Cooley Southern Methodist University

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

Make It!

Colliders as DM Hunters

- WIMPs do not interact in LHC detectors.

- Signature is missing transverse energy in the detector.
- DM can be produced directly or in decays.

Steven Lowette, Rencontres de Blois 2017

Some Current Searches

Collider physicists are looking everywhere:

Some Current Searches

Collider physicists are looking everywhere:

- Missing energy (dark matter) escaping the detectors
- Dark matter mediator searches in di-jet events

So far, no evidence of dark matter has been found!

Break It!

Credit: NASA; A. Mellinger/Central Michigan University; T. Linden/University of Chicago

Credit: Sky & Telescope / Gregg Dinderman

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

Gamma Rays

- Photons detected via pair production in high Z converter material.
- Cosmic rays are tagged by anticoincident detector.
- Detects energies ~ 20 MeV to more than 300 GeV.

Gamma Rays

- Flux decreases quickly with energy for gamma rays.
- To reach the highest energy gamma rays large area Cherenkov detectors are necessary.
- Pros: point back to source and spectral information.
- Cons: backgrounds & attenuation

Neutrinos

- Detect neutrinos produced in dark matter annihilations in the sun, center of Earth or galactic center.
- Pros: point back to source and spectral information, more directly comparable to direct detection σ s.
- Cons: backgrounds & low stats

Cosmic Rays

 Detect charged particles produced in dark matter annihilations and decays in the cosmos.

- Pros: spectral information and low background for antimatter searches.
- Cons: diffusion and do not point back to sources.

Current Limits in a Nutshell

- Thermal annihilation cross-section benchmarks either rule out or are in tension with dark matter with masses below 10 - 100 GeV (depends on final state).
- Decay lifetimes below ~ 10²⁷⁻²⁸s ruled out for most final states and keV - EeV dark matter masses; for MeV-GeV dark matter decaying to e+e- lifetimes can be as short as 10²⁴⁻²⁵s.

Tracy Slatyer, Rencontres de Blois 2017

Anomalies in a Nutshell

- The 3.5 keV Line:
 - First seen in XMM-Newton data at ~4 σ level (*PRL 113, 251301*)
 - Simplest DM solution is 7 keV sterile neutrino, in tension with some observations.
 - Possible astrophysics backgrounds: atomic lines (K,Cl, Ar, ?), charge exchange with heavy nuclei and neutral gas. Future instruments (MacroX) may help resolve situation.
- The GeV excess @ Galactic Center:
 - First claimed in 2009 with Fermi data (arXiv:0910.2998)
 - Many studies suggesting ~10-100 GeV DM
 - Tension with non-detection in dwarf galaxies
 - Mounting evidence of large contribution from pulsars (arXiv:1706.01199, PRL 116, 051102, arXiv:1412.6099)

More Anomalies in a Nutshell

- AMS Antiprotons

- Excess ~4.5σ possibly attributed to DM (*PRL 118, 191102; PRL 118, 191101*)
- Significant uncertainties: modeling of antiproton production cross section, cosmicray propagation, solar modulation.

- AMS Positrons

- Large excess of e⁺ > 10 GeV inconsistent with expectations for secondary e⁺ from proton collisions with interstellar medium.
- DM interpretation of signature for annihilation or decay in tension with other measurements.
- Potential for large pulsar contribution to signal. (arXiv:1702.08436)

WIMP Interactions

direction of Cygnus

- Dark Matter exists in a halo around our galaxy.
- Our speed relative to the dark matter halo is ~220 km/s.
- If the dark matter is a WIMP, ~ 10 million would go through a hand each second.

Shake It!

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

Noble Liquid Time Projection Chambers

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

Solid State Devices

SuperCDMS Detector

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

19

Edelweiss Detector

CRESST III Detector

Cosmic Rays:

Experiments are sited underground to reduce the number of cosmic ray particles that reach detectors.

livefromcern.web.cern.ch

Gran Sasso, Italy

Underground Facilities

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

Underground Facilities

^{11/6/2017 -} ICFA Seminar - WIMP Dark Matter - Jodi Cooley

LUX/LZ Muon Veto

DarkSide Neutron Veto

Edelweiss Active Muon & Passive Shield

XENON1T water shield & infrastructure

Natural Radioactivity:

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

Community Assays Database

Use Clean Materials

	radic	ity Material Assay I	.org Database			
	Search	Submit Settings	About			
	copper			Q		
» EXO (2008)	Copper, OFRP, Norddeutsche Affiner	rie Th	< 2.4 ppt	U	< 2.9 ppt	 ж
• EXO (2008)	Copper tubing, Metallica SA	Th	< 2 ppt	U	< 1.5 ppt	30
▶ ILIAS ROSEBUD	Copper, OFHC					ж
XENON100 (2011)	Copper, Norddeutsche Affinerie	Th-228	21() muBq/kg	U-238	70() muBq/kg	 26
> XENON100 (2011)	Copper, Norddeutsche Affiinerie	Th-228	< 0.33 mBq/kg	U-238	< 11 mBq/kg	 22
▶ EXO (2008)	Copper gasket, Serto	Th	6.9() ppt	U	12.6() ppt	 ×
EXO (2008)	Copper wire, McMaster-Carr	Th	< 77 ppt	U	< 270 ppt	 ж

http://radiopurity.org

Supported by AARM, LBNL, MAJORANA, SMU, SJTU, SNOLAB & others

In most cases, looking for materials at levels of < 1 ppb.

Make what you can't find!

Cryogenic distillation column for purification of ³⁹Ar

Make what you can't find!

Future experiments will require a massive effort to extract and distill ³⁹Ar — plans are underway.

Current Landscape

Current Landscape

Panda-X

New Experiment Hall at CJPL-II

LZ

5.6 ton fiducial mass LXe TPC detector to be sited in the Davis Cavern at SURF, South Dakota.

Year	Month	Activity
2012	March	LZ (LUX-ZEPLIN) collaboration formed
2014	July	LZ Project selected in US and UK
2015	April	DOE CD-1/3a approval, similar in UK
		Conceptual Design Report arXiv: 1509.02910
2016	August	DOE CD-2/3b approval
2017	February	DOE CD-3c approval
		Technical Design Report arXiv: 1703.09144
2017	March	LUX removed from underground
2017	June	Begin preparations for surface assembly
2018	July	Begin underground installation
2020		Begin commissioning
2021		Begin data taking for WIMP search
2024+		5+ years of operations

XENONnT

XENONnT proposal to LNGS submitted, work on site at LNGS to start in late 2018.

8 ton total LXe mass, 6 ton active (x3 compared to XENON1T)

DARWIN

- International collaboration (previously a consortium) of 24 groups.
- 40 ton LXe TPC detector with a goal of being sensitive to the coherent neutrino background.
- Plan to begin after completion of XENONnT
- Active R&D supported by the ERC.

The Global Argon Dark Matter Collaboration

ArDM DarkSide DEAP MiniCLEAN

- A Single Global Program for Direct Dark Matter Searches
 - Currently taking data: ArDM, DarkSide-50, DEAP-3600
 - Next step: DarkSide-20k at LNGS (2021-)
 - Last Step: 300 tonnes detector, location t.b.d (2027-)
- Status:
 - DarkSide-20k approved by INFN and LNGS in April 2017 and by NSF in Oct 2017
 - Officially supported by LNGS, LSC, and SNOLAB
 - 30 tonnes (20 tonnes fiducial) of low-radioactivity underground argon
 - 14 m² of SiPM coverage

SuperCDMS

SuperCDMS SNOLAB
 cryostat designed to hold 31
 towers.

Initial Payload:
1 Ge iZIP tower (6 Ge)
1 Ge/Si iZIP tower (4 Ge/ 2 Si)
2 HV towers (4 Ge/ 2 Si each)

HV detector

iZIP detector

SuperCDMS R&D

- Seeing e-h quantization: proof of principle in Si detector
- Enables thresholds down to one e-h pair enabling future searches down to solar neutrino background!

11/6/2017 - ICFA Seminar - WIMP Dark Matter - Jodi Cooley

Conclusions

- There is a very large world-wide, multi-pronged approach for experimentally trying to detect the constituents of dark matter that includes direct detection of DM-nucleon scattering, indirectly detecting products of annihilation or decay of DM and producing DM in a collider.
- Dark matter search experiments have been very successful in ruling out a number of favored candidates. No compelling evidence for the detection of DM currently exists. However, there are perhaps tantalizing "hints" from indirect detection searches and the DAMA/LIBRA anomaly is not yet fully explained.
- A diverse set of experiments and target materials are needed. All three approaches are complementary and are making fast headway in exploring new parameter space.
- Stay tuned! Current experiments are producing results at a fast pace and larger, more sensitive experiments are soon to come online.

Back-up Slides

Simulated Spectra for HV Ge & Si detectors – showing future reach to solar neutrino floor enabled with e-h quantization

CMS & Direct Detection

