Dark Sectors

Natalia Toro SLAC National Accelerator Lab

> ICFA Seminar Nov 6, 2017

What is a Dark Sector?

Key idea: A new force may be essential to the physics of Dark Matter!

Analogy w/ Nuclear structure & hadron spectrum – Puzzles about structure of matter led to prediction of

new forces & related symmetries up to 40 years ahead of their time

The idea of dark forces motivates qualitatively new parameter space, where important targets can be explored by small experiments

WIMPs: Confluence of Motivations

Simple, familiar Particle Content:

New Standard-Model-like matter at Standard-Model-like scales

in particular, weak-scale matter with weak interactions

particularly motivated by hierarchy problem – why is the gravitational force between fundamental particles so weak? A simple, predictive explanation for <u>origin</u> of dark matter:

WIMPs: Confluence of Motivations

Simple, familiar Particle Content:

New Standard-Model-like matter at Standard-Model-like scales

in particular, weak-scale matter with weak interactions

particularly motivated by hierarchy problem – why is the gravitational force between fundamental particles so weak?

A simple, predictive explanation for <u>origin</u> of dark matter:

Dark matter was once in thermal equilibrium with familiar matter

Prediction from common history + measured abundance:

Assume TeV-scale mass ↔ Weak-ish interaction strength

WIMPs: Confluence of Motivations

Simple, familiar Particle Content:

New Standard-Model-like matter at Standard-Model-like scales

in particular, weak-scale matter with weak interactions

particularly motivated by hierarchy problem – why is the gravitational force between functional force between A simple, predictive explanation for <u>origin</u> of dark matter:

Dark matter was once in thermal equilibrium with familiar matter

Prediction from common

Wea Constraints on WIMPs and TeV-scale physics more generally motivate a modest generalization of this picture

ngth

Simple, familiar particle content:

New Standard-Model-like matter and forces at Standard-Model-like scales

many solutions to hierarchy problem involve such new sectors – may be at different mass scale

Simple, familiar particle content:

New Standard-Model-like matter and forces at Standard-Model-like scales

many solutions to hierarchy problem involve such new sectors – may be at different mass scale Familiar matter must be neutral under these forces - so how would we test it?

Residual interactions from quantum corrections:

 $g_{\rm eff} \sim (10^{-6} - 10^{-2})e$

Weak enough to be missed experimentally so far

Simple, familiar particle content:

New Standard-Model-like matter and forces at Standard-Model-like scales

many solutions to hierarchy problem involve such new sectors – may be at different mass scale

 $g_{\rm eff} \sim (10^{-6} - 10^{-2})e$

Weak enough to be missed experimentally so far

A simple, predictive explanation for <u>origin</u> of dark matter:

Dark matter was once in thermal equilibrium with familiar matter

Prediction from common history + measured abundance:

Very weak coupling \leftrightarrow Lower (MeV-GeV) mass

Simple, familiar particle content:

New Standard-Model-like matter and forces at Standard-Model-like scales

many solutions to hierarchy problem involve such new sectors – may be at different mass scale A simple, predictive explanation for <u>origin</u> of dark matter:

Dark matter was once in thermal equilibrium with familiar matter

A simple & motivated extension of WIMP paradigm

$$g_{\rm eff} \sim (10^{-6} - 10^{-2})\epsilon$$

Weak enough to be missed experimentally so far

Very weak coupling ↔ Lower (MeV-GeV) mass

n

Dark Sectors Why now?

- Unlocking a dark sector will open up a wealth of new questions about nature
 - But why not focus on finding dark matter first, and only then see if it motivates new forces?

Dark Sectors Why now?

- Unlocking a dark sector will open up a wealth of new questions about nature
 - But why not focus on finding dark matter first, and only then see if it motivates new forces?
- Although underlying physics is WIMP-like, the experimental implications are distinctive

Dark Sectors Why now?

- Unlocking a dark sector will open up a wealth of new questions about nature
 - But why not focus on finding dark matter first, and only then see if it motivates new forces?
- Although underlying physics is WIMP-like, the experimental implications are distinctive

Outline

 Hidden sector DM extends thermal DM to sub-GeV mass range, maintaining WIMP motivation of SM-like matter at SM-like scales

- Framework for systematic exploration, where these motivations lead to new, predictive milestones
- Opportunities to test this hypothesis with new small experiments

Defined Possibilities

♦ Whether dark sector is simple ... or complex,

we would look for it the same way!

 Standard Model symmetries restrict its interactions with us to two types

Defined Possibilities

♦ Whether dark sector is simple ...

we would look for it the same way!

 Standard Model symmetries restrict its interactions with us to two types

Vector Portal $\frac{1}{2}\epsilon_Y F'^{\mu\nu}F^Y_{\mu\nu}$

Conserved charge can also explain dark matter's stability

New spin-1 "dark photon" mixes with photon \rightarrow couples to electric charge

Higgs Portal $\epsilon_h |\phi|^2 |h|^2$

New spin-0 "dark Higgs" mixes with SM Higgs → couples to lepton & quark masses

New TeV-scale matter or other SM extensions allow related possibilities, with different charge assignments

Sharp Targets for Coupling

Follow directly from the motivations above

predicted interaction rate depends mildly on dark matter particles' spin 9

Sharp Targets for Coupling

Follow directly from the motivations above

ratios in dark sector)

predicted interaction rate depends mildly on dark matter particles' spin 9

Lessons for Experiment

 Hidden-Sector Dark Matter is highly motivated and predictive, but experimentally elusive

- Standard Model-like dark matter could be much lighter than WIMPs suggest
 - Thermal origin motivates sharp coupling vs. mass milestone
 - Look for scattering → lower energy threshold
 - Look for laboratory production → modest energy sufficient, but need high intensity and/or precision

Look directly for new force!

- High-precision measurements
- Resonant mediator production in particle collisions → again need intensity

Vibrant, World-Wide Program

bh] 14 Jul 2017

Light DM production

Light DM scattering

Resonant mediator searches

Dark Sectors 2016 Workshop: Community Report

Jim Alexander (VDP Convener),¹ Marco Battaglieri (DMA Convener),² Bertrand Echenard (RDS Convener),³ Rouven Essig (Organizer),^{4,*} Matthew Graham (Organizer),^{5,†} Eder Learning (DMA Convener),⁶ John Janes (Organizer),^{5,‡} Gordan Krnjaic (DM Convener),⁹ 7 (DD Convener) Shuve (RDS Convener),⁵ Natalia Toro (Organizer),^{5,6,**} Richard G Van De Water (DMA Convener),¹² Daniel Akerib,^{5,13} Haipeng An,³ Konrad Aniol,¹⁴ Isaac J. Arnquist,¹⁵ David M. Asner,¹⁵ Henning O. Back,¹⁵ Keith Baker,¹⁶ Nathan Baltzell,¹⁷ Dipanwita Banerjee,¹⁸ Brian Batell,¹⁹ Daniel Bauer,⁷ James Beacham,²⁰ Jay Benesch,¹⁷ James Bjorken,⁵ Nikita

Brian Batell,¹⁵ Daniel Bauer,⁷ James Beacham,²⁶ Jay Benesch,¹⁷ James Bjorken,⁶ Nikita Blinov,⁵ Celine Boehm,²¹ Mariangela Bondí,²² Walter Bonivento,²³ Fabio Bossi,²⁴ Stanley J. Brodsky,⁵ Ran Budnik,²⁵ Stephen Bueltmann,²⁶ Masroor H. Bukhari,²⁷

Raymond Bunker,¹⁵ Massimo Carpinelli,^{28,29} Concetta Cartaro,⁵ David Cassel,^{1,5} Gianluca Cavoto,³⁰ Andrea Celentano,² Animesh Chaterjee,³¹ Saptarshi Chaudhuri,⁸ Gabriele Chiodini,²⁴ Hsiao-Mei Sherry Cho,⁵ Eric D. Church,¹⁵ D. A. Cooke,¹⁸ Jodi Cooley,³² Bobert Cooper ³³ Boss Corliss ³⁴ Paolo Crivelli ¹⁸ Francesca Curciarello ³⁵ Annalisa

US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report

Marco Battaglieri (SAC co-chair),¹ Alberto Belloni (Coordinator),² Aaron Chou (WG2 Convener),³ Priscilla Cushman (Coordinator),⁴ Bertrand Echenard (WG3 Convener),⁵ Rouven Es: (WG4 Conv Peter Gra **arXiv:17707.04591** Convener),³ ik (SAC member),³ Convener),¹¹ Daniel McKinsey (WG1 Convener),¹² Matthew Pyle (SAC member),¹² Natalie Roe (Coordinator),¹³ Gray Rybka (SAC member),¹⁴ Pierre Sikivie (SAC member),¹⁵ Tim M.P. Tait (SAC member),⁷ Natalia Toro (SAC co-chair),^{9,16} Richard Van De Water (SAC member),¹⁷ Neal Weiner (SAC member),¹⁸ Kathryn Zurek (SAC member),^{13,12} Eric Adelberger,¹⁴ Andrei Afanasev,¹⁹ Derbin Alexander,²⁰

James Alexander,²¹ Vasile Cristian Antochi,²² David Mark Asner,²³ Howard Baer,²⁴ Dipanwita Banerjee,²⁵ Elisabetta Baracchini,²⁶ Phillip Barbeau,²⁷ Joshua Barrow,²⁸ Noemie Bastidon,²⁹ James Battat,³⁰ Stephen Benson,³¹ Asher Berlin,⁹ Mark Bird,³² Nikita

Need for Multi-Pronged Search

Fully explore the simple thermal models Light DM motivated production earlier

Where multiple searches explore the same candidate, they give complementary insights

Light DM scattering

Resonant mediator searches

Unique sensitivity to models with very light (sub-keV-scale) mediators

Probe models with mediator lighter than dark matter (even if DM is heavy)

Mediator Searches

- If mediator too light to decay into DM, will instead decay to visible matter
- Searches exploit several production modes
 - bremsstrahlung
 - meson decays
 - e⁺e⁻ annihilation
 - Drell-Yan

Mediator Searches

- If mediator too light to decay into DM, will instead decay to visible matter
- Lifetime dictates search strategy

Mediator Searches

- If mediator too light to decay into DM, will instead decay to visible matter
- Lifetime dictates search strategy $\frac{30k}{\alpha}$ $\frac{30$

Low-Threshold Direct Detection

- Challenge: light dark matter gives lower-energy recoils but dramatic gains achievable with sub-kg detectors
- ✦ Calls for
 - Detecting DM scattering off electrons or low-mass nuclei
 - Exploiting low-threshold processes and new readout technologies

✦ Examples

- SuperCDMS in high-voltage mode can explore ≥400 MeV mass via Silicon recoil
- SENSEI using eV-scale electron recoils in skipper CCDs to probe ≥2 MeV dark matter
- Longer-term R&D ideas: magnetic bubble chambers, superfluid He, superconductor, ... to reach ~keV DM masses

Low-Threshold Direct Detection

Direct detection is closing in on some thermal models (+ a variety of interesting non-thermal ones, not shown here)!

But other thermal models are simply unreachable.

DM¹⁰Mass (MeV)

Velocity-suppression

Low-Threshold Direct Detection

Dark matter halo is non-relativistic! $(10^{-3} c) \Rightarrow$

Xsec predictions spread over tens of decades, much like for WIMPs!

Small DM-SM coupling

Velocity-suppression

Dark-Matter Production I Remedy: make relativistic dark matter! - there are already powerful constraints on such production from experiments >30 years ago Hill **SLAC E137** 90 PRD 1988 Bjorken et al Elevation (m) χ χ A'80 Detector Target A' e^{-} A1 100 300 0 200 400 Distance (m) χ AI Electron Beam Target Dirt Detector can do this too - Accele - Power c) new proposals Production Scattering ns - but hard to use bo scale up!

18

Dark-Matter Production II

 To beat this scaling, must detect dark matter production via kinematics of visible final states
need signal yield xy and low background

19

Dark-Matter Production II

Conclusions

Hidden sector DM extends thermal DM to sub-GeV mass range, maintaining WIMP motivation of SM-like matter at SM-like scales

- Can systematically explore DM couplings to familiar matter
 - Thermal abundance motivates important target in parameter-space
- Together, upcoming projects and proposed small experiments can test this hypothesis
 - Active international community
 - Very high impact for low cost