Nuclear Astrophysics

Marialuisa Aliotta

School of Physics and Astronomy - University of Edinburgh, UK Scottish Universities Physics Alliance

How much carbon is there in the Universe? Where does it come from?

Nuclear Astrophysics

• Where do all chemical elements come from?

How do stars and galaxies form and evolve?

Intimate connection between

MICRO COSMOS

and

MACRO COSMOS

The Messengers of the Universe

electromagnetic emissions

radio, microwave, infrared, optical, X-ray, γ-ray

Crab Nebula SN 1054

neutrinos, cosmic rays, meteorites, lunar samples, ...

electromagnetic emissions

radio, microwave, infrared, optical, X-ray, γ-ray

Crab Nebula SN 1054

direct messengers

neutrinos, cosmic rays, meteorites, lunar samples, ...

gravitational waves

(Solar) Abundance Distribution

Data sources:

Earth, Moon, meteorites, cosmic rays, solar & stellar spectra...

Features:

- distribution everywhere similar
- 12 orders-of-magnitude span

(Solar) Abundance Distribution

Data sources:

Earth, Moon, meteorites, cosmic rays, solar & stellar spectra...

Features:

- distribution everywhere similar
- 12 orders-of-magnitude span
- H ~ 75%, He ~ 23%
- C → U ~ 2% ("metals")
- D, Li, Be, B under-abundant

(Solar) Abundance Distribution

Data sources:

Earth, Moon, meteorites, cosmic rays, solar & stellar spectra...

Features:

- distribution everywhere similar
- 12 orders-of-magnitude span
- H ~ 75%, He ~ 23%
- C → U ~ 2% ("metals")
- D, Li, Be, B under-abundant
- exponential decrease up to Fe
- nearly flat distribution beyond Fe

Burbidge, Burbidge, Fowler & Hoyle (B²FH):

Rev. Mod. Phys. 29 (1957) 547

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

Burbidge, Burbidge, Fowler & Hoyle (B²FH):

Rev. Mod. Phys. 29 (1957) 547

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

Burbidge, Burbidge, Fowler & Hoyle (B²FH):

Rev. Mod. Phys. 29 (1957) 547

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

neutroncapture reactions

mainly unstable nuclei

Interstellar medium

BIRTH gravitational contraction

Stars

Interstellar medium

BIRTH gravitational contraction

Stars

- > energy production
- > stability against collapse
- > synthesis of "metals"

Interstellar medium

BIRTH gravitational contraction

explosion ejection

DEATH

Stars

- energy production
- > stability against collapse
- > synthesis of "metals"

massive stars contribute to chemical evolution of the Universe later generation stars form out of enriched material: more metal rich

Direct evidence for nuclear reactions in stars?

Solar Neutrino Detection at Homestake in 1960s

1965: Ray Davis inside chlorine tank that used as for solar neutrino detection

Credit: Anna Davis

1982: discovery of 1.8 MeV γ -rays associated with 26 Al decay (t $\frac{1}{2}$ = $7x10^5$ y) direct proof of ongoing nucleosynthesis in our Galaxy

Puzzling Facts and Open Questions

- Big Bang Nucleosynthesis: Li problem(s) and the D abundance
- Core metallicity of the Sun
- Fate of massive stars
- Explosive scenarios: X-ray bursts, novae, SN type la
- Pre-solar grains composition
- Origin of Heavy Elements
- Astrophysical site(s) for the r-process
- •

Big Bang Nucleosynthesis

BBN is only handle to probe state of universe during epoch of radiation domination

Primordial Nucleosynthesis (BBN): 3 minutes after Big Bang

Primordial Nucleosynthesis (BBN): 3 minutes after Big Bang

Density of Ordinary Matter (Relative to Photons)

Primordial Nucleosynthesis (BBN): 3 minutes after Big Bang

observations of D, ³He, ⁴He, and ⁷Li in very old (metal poor) stars provide stringent tests of Big Bang theory

Density of Ordinary Matter (Relative to Photons)

NASA/WMAP Science Team WMAP101087

Lithium Problem(s)

a success story:

discrepancy revealed thanks to close interplay among theory, observation, and experiment

first Lithium Problem

observed ⁷Li

~ 3x lower than predicted

- no nuclear solution
- new (astro)physics?
- physics beyond Standard Model?

first Lithium Problem

observed ⁷Li

~ 3x lower than predicted

- no nuclear solution
- new (astro)physics?
- physics beyond Standard Model?

second Lithium Problem

observed ⁶Li

 $\sim 10^2 - 10^3$ higher than predicted

first Lithium Problem

observed ⁷Li

~ 3x lower than predicted

- no nuclear solution
- new (astro)physics?
- physics beyond Standard Model?

second Lithium Problem

observed ⁶Li

 $\sim 10^2 - 10^3$ higher than predicted

poor nuclear physics inputs or challenges with observation?

Fate of Massive Stars

Supernovae or White Dwarfs?

Late Evolution of Massive Stars

fusion reactions become endothermic

gravitational collapse

catastrophic supernova explosion

Late Evolution of Massive Stars

fusion reactions become endothermic

gravitational collapse

catastrophic supernova explosion

Late Evolution of Massive Stars

fusion reactions become endothermic

gravitational collapse

catastrophic supernova explosion

Experimental Challenges of Direct Measurements

- nuclear reactions in stars are very rare processes
 - p+p fusion takes 10⁹ y (in the Sun)

Experimental Challenges of Direct Measurements

- nuclear reactions in stars are very rare processes
 - p+p fusion takes 10⁹ y (in the Sun)
- low signal-to-noise ratios (0.3-30 events/y)
 - 1-200 events/PhD

Experimental Challenges of Direct Measurements

- nuclear reactions in stars are very rare processes
 - p+p fusion takes 10⁹ y (in the Sun)
- low signal-to-noise ratios (0.3-30 events/y)
 - 1-200 events/PhD
- need for ultra low background
 - ideally underground

LUNA: Laboratory for Underground Nuclear Astrophysics

only underground accelerator in the world but new ones coming up in the US and China

VOLUME 82, NUMBER 26

PHYSICAL REVIEW LETTERS

28 June 1999

First Measurement of the ³He(³He, 2*p*)⁴He Cross Section down to the Lower Edge of the Solar Gamow Peak

R. Bonetti, ¹ C. Broggini, ², * L. Campajola, ³ P. Corvisiero, ⁴ A. D'Alessandro, ⁵ M. Dessalvi, ⁴ A. D'Onofrio, ⁶ A. Fubini, ⁷ G. Gervino, ⁸ L. Gialanella, ⁹ U. Greife, ⁹ A. Guglielmetti, ¹ C. Gustavino, ⁵ G. Imbriani, ³ M. Junker, ⁵ P. Prati, ⁴ V. Roca, ³ C. Rolfs, ⁹ M. Romano, ³ F. Schuemann, ⁹ F. Strieder, ⁹ F. Terrasi, ³ H. P. Trautvetter, ⁹ and S. Zavatarelli ⁴ (LUNA Collaboration)

excluded a "nuclear solution" to the missing neutrino problem

VOLUME 82, NUMBER 26

PHYSICAL REVIEW

PHYSICSLETTERSB

28 JUNE 1999

lge

First Measurement of the ³He^{/3}

R. Bonetti, ¹ C. Broggini, ^{2,*}

G. Gervino,8 L. Gia15 C. Rolf

Available online at www.sciencedirect.com

Fubini.7 Roca.3

First measurement of the $^{14}N(p, \gamma)^{15}O$ cross section down to 70 keVA. Lemut, D. Bemmerer, F. Confortola, R. Bonetti, C. Broggin, R. Menegazzo, P. Prati, G. Gervino, B. Limata, R. Menegazzo, P. Prati, A. P. Jesus, M. Junker, B. Limata, R. Menegazzo, A. P. Jesus, M. Junker, B. Limata, R. Menegazzo, G. Imbriani, A.P. Jesus, M. Junker, B. Limata, R. Menegazzo, G. Imbriani, A.P. Jesus, M. Junker, B. Limata, R. Menegazzo, R. M. Junker, R. M. Junke Costantini⁸, J. Cruz^d, A. Formicola⁸, Zs. Füllöp^f, G. Gervino⁸, A. Guglielmetti^c, C. Gustavini, E. Somorjai, M. Junker⁸, B. Limata^h, R. Menegazzo^h, E. Schümann^f, E. Schümann^f, E. Schümann^f, C. Rossi Alvarez^h, F. Schümann^f, F. Sc Gy. Gyürky, G. Imbriani, A.P. Jesus, M. Junker, B. Limata, F. Schirmann, E. Somorjai, C. Rossi, H.P. Trauvetter, H.P. Trauvetter, C. Rossi, H.P. Trauvetter, F. Strieder, F. Tetrasi, H.P. Trauvetter, Gy. Roca, D. Rogalla, C. Rois, F. Strieder, F. Tetrasi, H.P. Trauvetter, Gy. Roca, D. Rogalla, C. Straniero, F. Strieder, F. Tetrasi, H.P. Trauvetter, Gy. Roca, D. Rogalla, G. Straniero, F. Strieder, F. Tetrasi, H.P. Trauvetter, Gy. Roca, D. Rogalla, G. Straniero, F. Strieder, F. Tetrasi, H.P. Trauvetter, Gy. Roca, D. Roca, D. Rogalla, G. Straniero, F. Strieder, F. Tetrasi, H.P. Trauvetter, Gy. Roca, D. Roca, D.

slowest reaction in CNO cycle in the Sun blem

LUNA: Past and Recent Highlights

A&A 420, 625-629 (2004) DOI: 10.1051/0004-6361:20040981 © ESO 2004 CAL REVIEW IT

28 June 1999

VOLUME 82, No

PHYSICSLETTERSB welsevier.com/locate/physleth

Edge

Fir

The bottleneck of CNO burning and the age of Globular Clusters R. Bonet G. Imbriani 1,23
G. Gerv Z. Fülöp 11, H. Costantini 4
R. Menegazzo 9
G. Gervino 12, A. Formicola 5,6
O. Straniero 1,2, V. Roca 3,3
F. F. Strieder 5, C. Rolfs 5, Gustavino 6, G. Gyürky 11, C. Broggini 9, P. Corvisiero 4
H. P. Trautvetter 5, A. Vomiero 1,4
F. Schümann 5, G. Schümann 5, A. Lemur 6, A. Vomiero 1,4
F. Schümann 5, A. Lemur 7, A. Vomiero 1,4
F. Schümann 5, E. Schümann 5, A. Lemur 7, and S. Zavatarelli 4

T. Trautvetter 5, A. Vomiero 1,4
F. Schümann 5, E. Schümann 5, A. Lemur 7, and S. Zavatarelli 1,4

T. Trautvetter 5, A. Vomiero 1,4
F. Schümann 5, E. Schümann 5, A. Lemur 7, and S. Zavatarelli 1,4

T. Trautvetter 5, A. Vomiero 1,4
F. Schümann 5, E. Schümann 5, A. Lemur 7, and S. Zavatarelli 1,4

T. Trautvetter 5, A. Vomiero 1,4
F. Schümann 5, E. Schümann 5,

increased age of universe by 1 billion years H. Costantini³, J. Cruz⁴, A. Formicola esta of the Costantini⁴, C. Robert esta of the Costantini slowest reaction in

\. Fubini,⁷

7. Roca,3

Astronomy

Astrophysics

LUNA: Past and Recent Highlights

VOLUME 82, No

A&A 420, 625_629 (2004) DOI: 10.1051/0004-6361:20040981 ~AL REVIEW ! -

PHYSICS LETTERS B

28 June 1999

Fir

PRL **117**, 142502 (2016)

PHYSICAL REVIEW LETTERS

week ending 30 SEPTEMBER 2016

Edge

Improved Direct Measurement of the 64.5 keV Resonance Strength in the $^{17}O(p,\alpha)^{14}N$ Reaction at LUNA

C. G. Bruno, 1,* D. A. Scott, M. Aliotta, 1,† A. Formicola, A. Best, A. Boeltzig, D. Bemmerer, C. Broggini, A. Caciolli, F. Cavanna, G. F. Ciani, P. Corvisiero, T. Davinson, R. Depalo, A. Di Leva, Z. Elekes, F. Ferraro, Zs. Fülöp, G. Gervino, 10 A. Guglielmetti, 11 C. Gustavino, 12 Gy. Gyürky, G. Imbriani, M. Junker, R. Menegazzo, V. Mossa, 13 F. R. Pantaleo, 13 D. Piatti, P. Prati, E. Somorjai, O. Straniero, 4 F. Strieder, T. Szücs, M. P. Takács, and D. Trezzi 11

increased rate by factor 2.5 \rightarrow faster ¹⁷O destruction

H. Costantinia, C. Rosalla, C. Zavatarelli4

LUNA: Past and Recent Highlights

VOLUME 82, No

A&A 420, 625_629 (2004)
DOI: 10.1051/0004-6361:20040981 AL REVIEW I

MUVEICS LETTERS B

28 June 1999

Edge

Fir

TL

R. PRL 117, 142502 (2016)

PUBLISHED: 30 JANUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0027

week ending PTEMBER 2016

astronomy nature

C.G.Bn

G.

F. Cavan

G. Gervin F. R. Panta

Origin of meteoritic stardust unveiled by a revised M. Lugaro^{1,2*}, A. I. Karakas^{2,4}, C. G. Bruno⁵, M. Aliotta⁵, L. R. Nittler⁶, D. Bemmerer⁷, A. Best⁸, T. Davineon⁵ D. Carviciaro¹² T. Davineon⁵ D. A. Roeltzio⁹, C. Rroggini¹⁰, A. Caciolli¹¹, F. Cavanna¹² G. F. Ciani⁹ D. Corviciaro¹² T. Davineon⁵ D. Roeltzio⁹, C. Rroggini¹⁰, A. Caciolli¹¹, F. Cavanna¹² G. F. Ciani⁹ D. Corviciaro¹² T. Davineon⁵ D. Remmerer⁷, A. Best⁸, T. R. Nittler⁶, D. Bemmerer⁷, A. R. R. Nittler⁸, D. R. Nittler⁸, M. Lugaro^{1,2*}, A. I. Karakas^{2,4}, C. G. Bruno⁵, M. Aliotta⁵, L. R. Nittler⁶, D. Bemmerer⁷, A. Best⁸, T. Davinson⁵, R. Depalo¹¹, A. Boeltzig⁹, C. Broggini¹⁰, A. Caciolli¹¹, F. Cavanna¹², 7 Flakas¹³, F. Favraro¹², A. Formicola¹⁴, 7 Flakas¹³, T. A. Di Leva⁸, Z. Elekes¹³, F. Ferraro¹², A. Formicola¹⁴, Zs. Fülöp¹³, G. Gervino¹⁵, A. Guglielmetti¹⁶, Ts. Fülöp¹³, G. Menegazzo¹⁰, V. Mossa¹⁸, F. R. Pantaleo¹⁴, R. Menegazzo¹⁰, V. Mossa¹⁸, F. R. Pantaleo¹⁴, R. Menegazzo¹⁰, V. Mossa¹⁸, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹³, M. D. Tabácc⁷ and D. Ts. C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹³, M. D. Tabácc⁷ and D. Ts. C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹³, M. D. Tabácc⁷ and D. Ts. C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁴, P. C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁴, P. C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁴, P. C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁴, P. C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁴, R. Menegazzo¹⁵, M. D. Tabácc⁷, and D. Tabácc C. Gustavino¹⁷, Gy. Gyürky¹³, G. Imbriani⁸, M. Junker¹⁴, R. Menegazzo¹⁰, V. Mossa¹⁸, F. R. Pantaleo¹⁸, D. Piatti¹¹, P. Prati¹², D. A. Scott⁵, O. Straniero¹⁴, F. Strieder²⁰, T. Szücs¹³, M. P. Takács⁷ and D. Trezzi¹⁶

Caciolli,7 Fülöp,9 Mossa, 13 Trezzi¹¹

Gy. Solving puzzle on origin of some pre-solar grains

25 year of Nuclear Astrophysics at LUNA (LNGS, INFN)

solar fusion reactions

3
He(3 He,2p) 4 He 2 H(p, γ) 3 He 3 He(α , γ) 7 Be

electron screening and stopping power

2
H(3 He,p) 4 He 3 He(2 H,p) 4 He

CNO, Ne-Na and Mg-Al cycles

14
N(p, γ) 15 O 15 N(p, γ) 16 O 22 Ne(p, γ) 23 Na 22 Ne(α , γ) 26 Mg 23 Na(p, γ) 24 Mg 25 Mg(p, γ) 26 Al

(explosive) hydrogen burning in novae and AGB stars

$$^{17}\text{O}(p,\gamma)^{18}\text{F}$$
 $^{17}\text{O}(p,\alpha)^{14}\text{N}$ $^{18}\text{O}(p,\gamma)^{19}\text{F}$ $^{18}\text{O}(p,\alpha)^{15}\text{N}$

Big Bang nucleosynthesis

2
H $(\alpha,\gamma)^{6}$ Li 2 H $(p,\gamma)^{3}$ He 6 Li $(p,\gamma)^{7}$ Be

neutron capture nucleosynthesis

13
C(α ,n) 16 O (to start soon)

some of the lowest cross sections ever measured (few counts/month)

25 year of Nuclear Astrophysics at LUNA (LNGS, INFN)

solar fusion reactions

3
He(3 He,2p) 4 He 2 H(p, γ) 3 He 3 He(α , γ) 7 Be

electron screening and stopping power

2
H(3 He,p) 4 He 3 He(2 H,p) 4 He

CNO, Ne-Na and Mg-Al cycles

14
N(p, γ) 15 O 15 N(p, γ) 16 O 22 Ne(p, γ) 23 Na 22 Ne(α , γ) 26 Mg 23 Na(p, γ) 24 Mg 25 Mg(p, γ) 26 Al

(explosive) hydrogen burning in novae and AGB stars

$$^{17}\text{O}(p,\gamma)^{18}\text{F}$$
 $^{17}\text{O}(p,\alpha)^{14}\text{N}$ $^{18}\text{O}(p,\gamma)^{19}\text{F}$ $^{18}\text{O}(p,\alpha)^{15}\text{N}$

Big Bang nucleosynthesis

2
H $(\alpha,\gamma)^{6}$ Li 2 H $(p,\gamma)^{3}$ He 6 Li $(p,\gamma)^{7}$ Be

neutron capture nucleosynthesis

13
C(α ,n) 16 O (to start soon)

some of the lowest cross sections ever measured (few counts/month)

18 reactions / 25 year ~ 20 months data taking per reaction!

THE LUNA Collaboration

Gran

Sasso

Gran Sasso

Laboratory

National

LUNA 50 kV (1992-2001) – Solar Phase

LUNA 400 kV (2000-2018) – CNO, Mg-Al and Ne-Na cycles, BBN

LUNA-MV (from 2018) – Helium burning, Carbon burning

https://luna.lngs.infn.it

X-ray Bursts and Other Explosions

50% of stars found in binary systems

H. Schatz, NSCL and Dept. of Physics and Astronomy, Michigan State University

explosive H burning involving unstable nuclei Time: -3.123e+02 sTemperature: 0.201 GK

H. Schatz, NSCL and Dept. of Physics and Astronomy, Michigan State University

H. Schatz, NSCL and Dept. of Physics and Astronomy, Michigan State University

H. Schatz, NSCL and Dept. of Physics and Astronomy, Michigan State University

light curves measured to great accuracy

light curves measured to great accuracy sensitivity studies to assess impact of reaction rate uncertainties validate models against observations

light curves measured to great accuracy
sensitivity studies to assess impact of reaction rate uncertainties
validate models against observations
yet most reactions beyond current capabilities

the Origin of Heavy Elements

heavy element abundances in metal poor stars show remarkable similarities and excellent agreement with solar values (not a metal poor star!)

heavy element abundances in metal poor stars show remarkable similarities and excellent agreement with solar values (not a metal poor star!)

Nucleosynthesis in the r-process

Nucleosynthesis in the r-process

Nucleosynthesis in the r-process

large neutron fluxes required! (~10²⁸ n/cm³)

what astrophysical sites for r-process:

core collapse supernovae

merging neutron stars

- neutrino driven wind of proto-neutron star
- He shell of exploding massive star merging neutron stars
- others?...

M. Aliotta

GW170817: A Major Discovery

17 August 2017

130 million light years from Earth

LIGO and VIRGO: first observation of gravitational waves from merging neutron stars

17 August 2017

130 million light years from Earth

LIGO and VIRGO: first observation of gravitational waves from merging neutron stars

event observed by 70 ground- and space-based observatories including in visible light 11h after GW detection

17 August 2017

130 million light years from Earth

LIGO and VIRGO: first observation of gravitational waves from merging neutron stars

event observed by 70 ground- and space-based observatories including in visible light 11h after GW detection

neutron star mergers could well be the main source for r-process elements

A new era in Astronomy has just begun...

many reactions involve <u>UNSTABLE</u> species, hence need for <u>Radioactive lon Beams</u>

To Conclude...

a superposition of nucleosynthesis events that occurred in the past

Nuclear Astrophysics 60 years on:

A truly remarkable achievement

Astrophysics

Stellar evolutionary codes nucleosynthesis calculations astronomical observations

Plasma Physics

degenerate matter electron screening equation of state

Nuclear Physics

experimental and theoretical Inputs stable and exotic nuclei

Atomic Physics

radiation-matter interaction energy losses, stopping powers spectral lines materials and detectors

experiments

observations

X-ray bursts: most common astrophysical explosions observed

total ~230 X-ray binaries known

Energy in persistent flux / Energy in bursts ~ 40

Gravitational energy / Thermonuclear ~ 200 [MeV/u] / 5 [MeV/u] ~ 40

X-ray bursts: thermonuclear origin