

## QCD AT STRONG COUPLING

- QCD is everywhere
  - Colliders: PDFs, fragmentation
  - Fixed target: form factors, GPDs
  - DM detectors: nuclear interactions
  - Astrophysical objects: neutron stars,...
  - Early universe
- Strongly coupled at low energy → Lattice QCD







## HIGH FIDELITY LATTICE QCD

- LQCD: strong coupling definition of QCD and method to handle quarks & gluons
- Numerical LQCD entering precision era
- Modern calculations control all systematics
  - Physical quark masses, infinite volume and continuum limits
  - Blind analyses, multiple independent groups
  - Include QED in numerical calculations
- ▶ QCD is the theory of <u>strong</u> strong interactions
- ▶ This talk: a few relevant/representative topics







# PRECISION FLAVOUR PHYSICS

## **LATTICE FLAVOUR PHYSICS**

- Test CKM paradigm and look for new physics
- Simple quantities: goal is precision & accuracy
  - Decay constants, meson transition form factors, ...
  - Status tracked by Flavour Lattice Averaging Group (FLAG)
- Complicated quantities: progressing towards complete calculations
  - Second order EW processes
  - Processes involving multiple hadrons





## HIGHLIGHTS

- Strong coupling: new independent precise determinations [Sommer et al.]
- **QCD** understanding of  $\epsilon'/\epsilon$
- Second order weak contributions:  $K_L$ - $K_S$  mass diff and rare decays  $K^+ \rightarrow \pi^+ \nu \nu$ ,...
- Progress on B→K\* treating final state Kπ
- New results on B and D mixing (SM and BSM operators)
- Inclusion of QED in many quantities

M. Bruno et al. PRL. 119 (2017) 102001



PDG non-lattic FLAG (2016) this work HPQCD, PRDS A. Bazavov et a HPQCD, PRDS HPQCD, PRDS HPQCD, PRDS PACS-CS, JHE K. Maltman et



Long running tension between  $V_{ub}$  (and  $V_{cb}$ ) extractions from inclusive B→X<sub>u</sub> (B→X<sub>c</sub>) and exclusive decays B→π (B→D)



Long running tension between  $V_{ub}$  (and  $V_{cb}$ ) extractions from inclusive B→X<sub>u</sub> (B→X<sub>c</sub>) and exclusive decays B→π (B→D)





$$\propto \operatorname{Im} \left( B \right) \left( B$$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2\mathrm{d}E_\ell} \propto |V_{ub}|^2 (...)_{\mu\nu}$$

$$\times \operatorname{Im}\left(-i\int \! \mathrm{d}^4x \; e^{-iq\cdot x} \, \langle B|\, \mathbf{T} \; J^{\mu\dagger}(x) \; J^{\nu}(0) \; |B\rangle\right)$$
OPE, HQET

#### Exclusive



$$\frac{\mathsf{d}\Gamma}{\mathsf{d}q^2} \propto |V_{ub}|^2 \left| (...)_{\mu} \underbrace{\langle \pi | J^{\mu} | B \rangle}_{\text{lattice QCD}} \right|^2$$

Long running tension between  $V_{ub}$  (and  $V_{cb}$ ) extractions from inclusive B→X<sub>u</sub> (B→X<sub>c</sub>) and exclusive decays B→π (B→D)



Possible to reconcile through BSM scenarios that produce RH currents at low energy

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ub}^L \left[ (1 + \epsilon_R) \bar{u} \gamma^\mu b - (1 - \epsilon_R) \bar{u} \gamma^\mu \gamma_5 b \right] \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu$$

$$\begin{array}{c} 0 \\ \times \\ 7 \\ \hline \\ 2 \\ \end{array}$$

$$\begin{array}{c} 8 \\ \times \\ 7 \\ \hline \\ \end{array}$$

$$\begin{array}{c} 1 \\ \times \\ 7 \\ \hline \\ \end{array}$$

$$\begin{array}{c} 8 \\ \times \\ 7 \\ \hline \\ \end{array}$$

$$\begin{array}{c} 1 \\ \times \\ \end{array}$$

$$\begin{array}{c} 1$$

## **∧**<sub>B</sub> DECAYS

- Bottom baryons provide another exclusive decay channel: Λ<sub>b</sub>→plv
- ▶ LHCb: branching fraction ratio measured

$$\frac{\int_{15\,\mathrm{GeV}^2}^{q_{\mathsf{max}}^2} \frac{\mathrm{d}\Gamma(\Lambda_b \to p \, \mu^- \bar{\nu}_\mu)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{7\,\mathrm{GeV}^2}^{q_{\mathsf{max}}^2} \frac{\mathrm{d}\Gamma(\Lambda_b \to \Lambda_c \, \mu^- \bar{\nu}_\mu)}{\mathrm{d}q^2} \mathrm{d}q^2} = (1.00 \pm 0.04 \pm 0.08) \times 10^{-2}$$

[1504.01568=Nature Phys. 11 (2015)]

• Extraction of  $|V_{ub}/V_{cb}|$  requires hadronic matrix elements

$$\langle p \, | \, \bar{u} \gamma^{\mu} b \, | \Lambda_b \rangle, \ \langle p \, | \, \bar{u} \gamma^{\mu} \gamma_5 b \, | \Lambda_b \rangle,$$
  $\langle \Lambda_c | \, \bar{c} \gamma^{\mu} b \, | \Lambda_b \rangle, \ \langle \Lambda_c | \, \bar{c} \gamma^{\mu} \gamma_5 b \, | \Lambda_b \rangle$  from LQCD





## **∧**<sub>B</sub> DECAYS

- ▶ 12 form factors needed
- Careful consideration of systematic uncertainties
  - Precise at large q<sup>2</sup>
- Compare partial integrals

$$\left| \frac{V_{ub}}{V_{cb}} \right| = 0.083(4)_{\text{expt}}(4)_{\text{latt}}$$

- $\begin{array}{c} \bullet \quad \text{Combine with exclusive $V_{cb}$ to get} \\ |V_{ub}| \end{array}$
- Recent LHCb shape extraction agrees perfectly





## INCLUSIVE VS EXCLUSIVE VUB

Consistent with mesonic exclusive measurement

$$|V_{ub}| = 3.27(0.15)_{\text{expt}}(0.16)_{\text{latt}}(0.06)_{V_{cb}} \times 10^{-3}$$

Disfavours RH currents as a solution to tension



Inclusive [PDG 2014]

 $B\rightarrow\pi lv$  [PDG 2014]

 $\Lambda_b \rightarrow plv$  [DLM/LHCb 2015]

 $B \rightarrow \pi l \nu [RBC/UKQCD 2015]$ 

 $B\rightarrow\pi l\nu$  [FNAL/MILC 2015]



figure modified from LHCb 1504.01568

- Exclusive extractions:
  - very different experimental and theoretical systematics
  - Mutual consistency (p=0.26)
- Inclusive extractions in significant tension
- RH current solutions disfavoured by baryonic extraction
- ?





## MUON ANOMALOUS MAGNETIC MOMENT

## STATUS AND CHALLENGES

 Long standing discrepancy between measured value and SM estimate for muon anomalous magnetic moment (~3σ)



- Sign of new physics or problem with theory?
- New experiments aiming at 4-fold uncertainty reduction (E989 @ Fermilab, E34 @ JPARC)
  - Requires commensurate control of theory

## STANDARD MODEL (G-2)<sub>MU</sub>

Measured value

$$a_{\mu}^{\text{E821}} = (116592089 \pm 63) \times 10^{-11} \quad (0.54 \,\text{ppm})$$

Breakdown of contributions (2 evaluations of HVP)

|                                          | Value ( $	imes 10^{-11}$ ) units                                                                 |
|------------------------------------------|--------------------------------------------------------------------------------------------------|
| $\overline{\mathrm{QED}\ (\gamma+\ell)}$ | $116584718.951\pm0.009\pm0.019\pm0.007\pm0.077_{m{lpha}}$                                        |
| HVP(lo) [20]                             | $6923\pm42$                                                                                      |
| HVP(lo) [21]                             | $6949\pm43$                                                                                      |
| HVP(ho) [21]                             | $-98.4\pm0.7$                                                                                    |
| $\mathrm{HLbL}$                          | $105 \pm 26$                                                                                     |
| $\mathbf{E}\mathbf{W}$                   | $154\pm1$                                                                                        |
| Total SM [20]                            | $116591802 \pm 42_{	ext{H-LO}} \pm 26_{	ext{H-HO}} \pm 2_{	ext{other}}  (\pm 49_{	ext{tot}})$    |
| Total SM [21]                            | $116591828 \pm 43_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}} (\pm 50_{\text{tot}})$ |

#### Deviation

$$\Delta a_{\mu}(\text{E821} - \text{SM}) = (287 \pm 80) \times 10^{-11} [20]$$
  
=  $(261 \pm 78) \times 10^{-11} [21]$ 

#### QED (5 loop) [Aoyama et al. 2012]



#### Hadronic vacuum polarisation



#### Hadronic light-by-light



#### Electroweak (2 loop) [Czarnecki et al. 2006]



## HOT TOPIC IN LQCD

▶ LQCD requirements

| Lattice | precision | timescale     | benchmark                     |
|---------|-----------|---------------|-------------------------------|
| HVP     | 1-2%      | Few years     | τ e+e⁻ discrepancy            |
| HVP     | sub-%     | This decade   | Competitive w/ e+e⁻           |
| hLbL    | any       | soon          | Course Verification of models |
| hLbL    | ~30%      | 3-5 years     | Competitive with models       |
| hLbL    | ~10%      | Ultimate goal | Replace models                |

[B Casey Lattice 2014 projections]

- Hugely active area of LQCD
  - Efforts to increase precision on HVP
  - Exploration of techniques to address HLbL



### HADRONIC VACUUM POLARISATION

- Current theoretical estimate from dispersive treatment
- Use data on σ(e+e-→hadrons)
   combining many data sets



Complicated analysis (0.6% prec)  $a_{\mu}^{\mathrm{HVP,LO}} = (694.91 \pm 4.27) imes 10^{-10}$ 



$$a_{\mu}^{
m had} = \int ds$$
  $\star$   $extbf{V}$   $extbf{Had}$ 

$$\Pi_V(k^2) - \Pi_V(0) = rac{k^2}{\pi} \int_{4m_\pi^2}^{\infty} ds rac{{
m Im}\Pi_V(s)}{s(s-k^2-i\epsilon)}$$

$$\operatorname{Im}\Pi_V(s) = \frac{s}{4\pi\alpha}\sigma_{\text{tot}}(e^+e^- \to X)$$

$$a_{\mu}^{\text{HVP}} = \frac{1}{4\pi^2} \int_{4m_{\pi}^2}^{\infty} ds K(s) \sigma_{\text{total}}(s)$$

## HADRONIC VACUUM POLARISATION

- Can be computed from SM directly [Blum PRL91 (2003) 052001]
- Analytically continue to Euclidean space  $K^2 = -q^2 > 0$

Use modified kernel

$$a_{\mu} = \frac{g-2}{2} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dK^2 f(K^2) \hat{\Pi}(K^2)$$

- Precision goal is challenging, but calculations rapidly improving
- Can also combine LQCD and dispersion relations
- Flavour breakdown: light~90%, strange~8% and charm~2%





580 600 620 640 660 680 700 720 740

C Lehner, Lattice 2017

## HADRONIC LIGHT-BY-LIGHT

- HLbL smaller but hard to determine
- Currently guesstimated from models
   (Colangelo et al.: dispersive analysis of some pieces)
- Various methods being explored
  - QCD+QED simulations
  - QCD with QED inserted pertubatively
  - Direct calculation of 4-pt correlator: 32 relevant tensor structures required for all possible momenta  $k_1$ ,  $k_2$ !
  - Calculation of relevant subprocesses/input to dispersive
- All challenging, but significant progress
  - ▶ 10% uncertainty seems reachable in ~5 years





# HADRONS AND NUCLEI

## HIGHLIGHTS

- Hadron spectroscopy
  - Exotic excited states guiding GlueX experiment @ JLab
  - Predictions for hadrons with heavy quarks ( $\Xi_{cc}$ ,  $\Xi_{b}$ ,...)
- Hadron structure
  - Complete spin decomposition of the proton
  - New approaches to Bjorken x dependence of PDFs
- Nuclei [see Holt, Monday]
  - Properties (magnetic moments) and interactions (np→dγ, pp-fusion,...) of light nuclei
  - Progress towards double- $\beta$  decay matrix elements



## LONG BASELINE NEUTRINO EXPERIMENTS

- DUNE: extract mass hierarchy and mixing parameters
- Neutrino scattering on argon
- Need fluxes/energies to high accuracy
  - Currently a challenging systematic
  - Axial properties of the nucleon <u>and</u> nuclear effects
  - Wide range of energies: elastic, resonance and DIS



### **AXIAL FORM FACTORS**

- Proton structure calculations in LQCD are challenging
  - Exponentially bad Monte-Carlo sampling (statistical noise)
  - Estimating systematics becomes tricky
- Now reaching necessary sophistication
- ▶ Eg: FFs of axial current

$$\langle N_{s'}(p')|J_{\mu}^{5}|N_{s}(p)\rangle = \overline{u}_{N}(p',s')\left[\gamma_{\mu}\gamma_{5}G_{A}(q^{2}) - \frac{iq_{\mu}}{2M}G_{P}(q^{2})\right]u_{N}(p,s)$$

- Calculated by many groups
- Soon will be more precise than phenomenological extractions





## TRITIUM BETA DECAY

- Electroweak processes in light nuclei: first LQCD calculations
- Tritium decay
  - NPLQCD collaboration

$$\langle {}^{\mathbf{3}}\mathrm{He}|\overline{\mathbf{q}}\gamma_{\mathbf{k}}\gamma_{\mathbf{5}}\tau^{-}\mathbf{q}|{}^{\mathbf{3}}\mathrm{H}\rangle$$

- Reproduce reduction of axial charge in nuclei (quenching)
- Effective field theory for larger nuclei
  - Constrain constants by matching to QCD calculations of light nuclei
- Future: QCD understanding of nuclear axial matrix elements







## TRENDS IN LQCD

## FUTURE

## **OUTLOOK**

- Lattice QCD(+QED) pervasive in particle and nuclear phenomenology
  - Exciting opportunities in flavour physics (LHCb, Belle II)
  - (g-2)<sub>μ</sub>: E989 + LQCD HVP and HLbL with 5σ discrepancy??
  - LQCD (+EFT) broadening impact from flavour physics to nuclear physics
  - Many other exciting developments not covered!
- Needs sustained growth of HPC and funding for algorithm and software development and co-design



## TRENDS IN LQCD

# FIN

## FLAG: MASSES, DECAY CONSTANTS, KAON BAG PARAMETER

- Quark masses, decay constants, form factors, kaon mixing, LECs...
- Colour coded for quality of calculation (# lattice spacings, volumes,...)







## **HEAVY HADRONS**

Predictions for baryons containing bottom/charm quarks



[Z Brown et al. PRD 2014]