LHC Higgs From Discovery to Measurement

Heather M. Gray, Lawrence Berkeley National Laboratory, on behalf of the ATLAS and CMS Collaborations ICFA Seminar, Ottawa, Canada

The Higgs boson in the Standard Model

- SM describes all known elementary **particles** and their **interactions**
- Local gauge invariance forbids explicit mass terms in the Lagrangian but experimentally both gauge bosons and fermions have mass
- Introduce a new field with a very specific potential that keeps the full Lagrangian invariant but makes the vacuum not invariant
- Higgs mechanism predicts existence of at least one new, neutral boson: the Higgs boson
 - SM parameters: mass (µ or m_н) and vacuum expectation value, v
 - Discovered at CERN by the ATLAS and CMS collaborations in 2012 after 40+ years of searching

$$\mathcal{L} = |D^{\mu}\phi|^{2} - y_{i}q_{L}^{i}q_{R}^{i}\phi - \mu^{2}\phi^{2} - \lambda\phi^{4} + \dots$$

The Large Hadron Collider (LHC)

The Higgs Boson at the LHC

Production

#Higgs produced at I3 TeV until today

5 main channels at the LHC

Decay branching fractions for $m_H = 125 \text{ GeV}$

- H→bb: 58 %
- H→WW*:21%
- H→τ⁺τ⁻: 6.3%
- H→ZZ*: 2.6%
- H→γγ: 0.2%

Overview of the LHC Higgs Program

Discovery Channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$

- Similar signal strength precision between channels
- Factor of two improvement in precision wrt Run-I
- 41 is starting to approach theory uncertainty

$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{\rm SM}}$$

 $\mu = 1.05^{+0.15}_{-0.14} (\text{stat})^{+0.11}_{-0.09} (\text{syst})$

6

 $\mu = 0.99^{+0.14}_{-0.14} = 0.99^{+0.12}_{-0.11}$ (stat.) $^{+0.06}_{-0.05}$ (exp.) $^{+0.06}_{-0.05}$ (theory)

Inclusive cross-section

Good agreement with SM prediction

Theory precision (N³LO) improved x2 between Run-1 and Run-2

e.g. <u>1602.00695</u>

Differential distributions

- Model-independent measurements of production and decay kinematics
- Use high precision ZZ,WW and $\gamma\gamma$ channels
- Allow comparisons to be made to precise calculations
- Also probes new physics: couplings in loops, CP mixing, etc.

Higgs Properties

Mass measurement

- Higgs mass is a SM parameter that needs to be determined from experiment
- Measure in the high resolution channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ(4I)$
- Precision depends on muon momentum scale and electromagnetic calorimeter calibration

arXiv:1706.0993, accepted by JHEP

Run-2 CMS: 125.26 ± 0.21 GeV ATLAS: 124.98 ± 0.28 GeV

Total width

- Lower bound on total width from decay measurements
- Direct experimental measurements probe 3 orders of magnitude larger than SM width (Γ=4 MeV)
- Indirect constraint* on the width via measurement of ratio of off-peak to on-peak cross-section
 - CMS: Γ < 13 MeV
 - ATLAS: Γ < 22 MeV

*N. Kauer and G. Passarino, JHEP (2012) 2012: 116 *F. Caola and K. Melnikov, PRD88 (2013) 054024

Higgs Boson Quantum Numbers

- SM predicts $J^{PC} = 0^{++}$
- Angular distributions sensitive to JP
- Wide range of alternative quantum numbers excluded at >99% CL
- All observations consistent with expectations for the SM Higgs boson

Tests of alternative J^P hypotheses in ZZ

Coupling to Fermions

Coupling vs Mass

JHEP08 (2016) 045

Observation of coupling to T-leptons

- 5.5σ observation of H→ττ from combination of ATLAS and CMS Run-I results
- 5.9 σ observation from CMS from combination of 7, 8 and 13 TeV results
- Most sensitive decay channel for VBF production

Evidence for coupling to b-quarks

- Difficult channels despite the large branching ratio (58%) due to large backgrounds
- Direct evidence recently obtained by ATLAS (3.5 σ) and CMS (3.3 σ) using most sensitive production mode:VH production
 - Further searches using ggF, VBF and ttH production
- Analysis cross-checked via observation of VZ(bb) production
- Most sensitive channel for VH production

Direct evidence for coupling to top quarks

- ttH production provides a probe of the direct coupling of the Higgs boson to top quarks
- 3.3 σ evidence for ttH production from CMS using leptonic final states
- 4.2 σ evidence from ATLAS from combination of five major decay modes

Other decays

Probing rare Higgs decays

- Exploit growing LHC dataset to explore further decay channels
 - H→µµ: 2.8 x SM
 - H→Zγ: 6.6 x SM
 - H→cc:
 - 110 x SM (ZH(cc))
 - 200 × SM (J/ψγ)
 - $H \rightarrow \phi \gamma$: 200 x SM
 - $H \rightarrow \rho \gamma$: 50 x SM

Invisible Higgs Decays

- The Higgs could decay to invisible or undetected BSM particles
- For invisible, the most sensitive channel is VBF
- Upper limit of ~30% at the 95% CL on branching fraction from combined ATLAS and CMS Run-1 results
 - Assumes unitarity-inspired constraint of $\kappa_{\rm V} < 1$
- Recent ATLAS search using associated ZH production sets a limit of 67% at the 95% CL
 Direct

Lepton-flavour violating Higgs decays

- No lepton flavour violating Higgs decays in the Standard Model
- Search for lepton flavour violation via H→eT and H→μT
- Slight tension with SM in Run-1 with a mild excess
- Obtain limits of ~10⁻³ on the off-diagonal couplings

DiHiggs Production

Double Higgs production

- Non-resonant HH production main probe for the Higgs self-coupling
- Tiny cross-section, σ = 33 fb, due to destructive interference
- Many possible channels: product of individual Higgs decay channels
- Sensitivity currently O(10) x SM
- Require full HL-LHC statistics to approach SM sensitivity

μ < @95%	ATLAS	CMS
bbbb	< 29	< 342
bbWW		< 79
bbττ		< 30
bbyy	< 7	< 9
WWYY	< 747	

Run-2	3 fb ⁻¹	I3 fb⁻I	36 fb ⁻¹
-------	--------------------	---------	---------------------

Additional Higgs Bosons

Searches for Additional Higgs Bosons

Many BSM models predict additional neutral or charged Higgs bosons

Additional neutral SM-like Higgs bosons with different mass

Example: cross-section limit from a low mass $H \rightarrow \gamma \gamma$ search

Charged Higgs bosons

Example: Search for a doublycharged Higgs boson decaying to two or three leptons

Conclusion

- Rapid progress in the Higgs measurement program at the LHC
- Observation or evidence for all main production and decay modes
 - Recent exploration of the fermionic sector
 - Searches for additional decay modes are being developed
- Mass measured to 0.2% precision
- Constraints on width from off-shell measurements
- Charge and parity consistent with SM predictions
- Searches have begun for diHiggs production
- No evidence for non-SM Higgs decays
- No evidence for additional Higgs bosons

Overall, excellent consistency with SM predictions

Backup