

Status and Prospects for SuperKEKB and Belle II

Toru lijima

Kobayashi-Maskawa Institute Nagoya University

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe November 7, 2017

SuperKEKB/Belle II

New intensity frontier facility at KEK

Target luminosity ; L_{peak} = 8 x 10³⁵ cm⁻²s⁻¹

 $\Rightarrow \sim 10^{10}$ BB, $\tau^+\tau^-$ and charms per year !

 $L_{int} > 50 \text{ ab-I}$

- Rich physics program
 - Search for New Physics through processes sensitive to virtual heavy particles.
 - New QCD phenomena (XYZ, new states including heavy flavors) + more

The first particle collider after the LHC !

Advantage of e⁺e⁻ Flavor Factory

- Clean environment
 - Efficient detection of neutrals (γ , π^0 , η , ...)
- Quantum correlated B⁰B⁰ pairs
 - High effective flavor tagging efficiency : ~34%(Belle II) ~3% (LHCb)
- Large sample of τ leptons
 - Search for LFV τ decays at O(10-9)
- Full reconstruction tagging possible
 - A powerful tool to measure;
 - b→u semileptonic decays (CKM)
 - decays with large missing energy
 - etc.
- Systematics different from LHCb
 - Two experiments are required to establish NP

SuperKEKB Accelerator

4

• Low emittance ("nano-beam") scheme employed (originally proposed by P. Raimondi)

Belle II Detector

- Deal with higher background (10-20×), radiation damage, higher occupancy, higher event rates (L1 trigg. 0.5→30 kHz)
- Improved performance and hermeticity

Belle II Collaboration

As of Oct. 2017

25countries/regions 105 institutions ~750 researchers

Europe	300
Austria	13
Czechia	6
France	14
Germany	110
Israel	3
Italy	76
Poland	13
Russia	42
Slovenia	16
Spain	4
Ukraine	3

Asia			346
Saudi Arabia	1	Korea	43
Australia	33	Malaysia	6
China	33	Vietnam	3
India	44	Taiwan	28
Japan	150	Thailand	2
		Turkey	3

America	129
Canada	28
Mexico	12
USA	89

SuperKEKB/Belle II Schedule

Phase 1 (w/o final focusing Q, w/o Belle II):
Accelerator system test and basic tuning,
Vacuum scrubbing,
Low emittance tuning, and
Beam background studies
Phase 2 (w/ final focusing Q, w/Belle II but background monitors instead of vertex detectors)
Verification of nano-beam scheme target: L>10³⁴ cm⁻²S⁻¹
Understand beam background especially in vertex detector volume

Phase I Commissioning Feb. - June 2016

Phase 1 milestones (in 2016)

- Feb. 1: BT tuning started
- Feb. 8: LER injection tuning started
- Feb. 10: beam storage in LER
- Feb. 22: HER injection tuning started
- Feb. 26: beam storage in HER

	HER	LER
Max. current [mA]	870	1010
Integrated current [Ah]	660	780
Avg. pressure [Pa]	~2 x 10 ⁻⁷	~1 x 10 ⁻⁶
Lifetime [min.]	~ 400	~ 70

8

Low Emittance Tuning

- Optics corrections have been worked successfully in both rings.
- Phase I target of vertical emittance has been achieved in LER.
- More calibration of X-ray monitor in HER needed in Phase 2.

skew-Q corrector coil on sextupole

permanent skew-Q to correct error field of Lambertson

Interaction region during Phase I

Beam Exorcism for A Stable ExperimenT Dedicated Background Monitors

Interaction region during Phase I

7- detector system providing :

- Thermal neutron rate
- Fast neutron tracking
- Neutral and charged dose rates
- EM spectrum and dose
- Bunch-by-bunch injection background
- More...

Interaction region during Phase I

Beam background

7- detector system providing :

- Thermal neutron rate
- Fast neutron tracking
- Neutral and charged dose rates
- EM spectrum and dose
- Bunch-by-bunch injection background
- More...

Interaction region during Phase I

7- detector system providing :

- Thermal neutron rate
- Fast neutron tracking
- Neutral and charged dose rates
- EM spectrum and dose
- Bunch-by-bunch injection background
- More...

Beam background

Belle II Integration

2013 - 2017 Feb. at roll-out position

B-KLM, 2013

TOP, 2016 Feb-May

E-KLM, 2014

CDC 2016 Oct-Dec

BW endcap, 2017 Jan-Feb

Belle II Integration

2013 - 2017 Feb. at roll-out position

Belle II Roll-In April 11, 2017

Belle II rolled-in to the beam line on April 11th, 2017 One of the most significant milestones in the construction phase

Belle II Roll-In April 11, 2017

Belle II rolled-in to the beam line on April 11th, 2017 One of the most significant milestones in the construction phase

Belle II Roll-In April 11, 2017

Belle II rolled-in to the beam line on April 11th, 2017 One of the most significant milestones in the construction phase

Field Measurement of QCS + Solenoid

- The QCS system is the key ingredient of the nano-beam collisions.
 - 55 superconducting coils in 2 cryostats
- Performance test of the QCS system carried out May August, 2017.
 - Cool-down and excitation together with the Belle II solenoid at 1.5 T.
 - Careful magnetic field measurements with Single Stretched Wire (SSW), Harmonic coils and hall probe.

SSW

A Φ0.1mm BeCu wire stretched on the beam line through the two cryostats, moved in the field to measure the center and angle from induced voltage. (collaboration with Fermilab)

Harmonic coils

The multipole field components as the error components were measured with the 6 harmonic coils.

Forward End-cap Installation Sep.-Oct., 2017

 Two sub-detectors (A-RICH + FW ECL) are combined and installed into Belle II.

Belle II Vertex Detector

Status of VXD production

SVD

- Ladder production: completed at 3 out of 5 sites.
 - will be finished by Feb. 2018.
- Ladder mount started (Sep.7, 2017) ٠
 - L3 mount completed (Sep. 19, 2017)
 - Completion of the 1st half shell (Dec. 2017)
 - Completion of the 2nd half shell (Apr. 2018)

Ladder mount tools and procedures have undergone a series of technical reviews and were finally approved on Sep 5, 2017

PXD

- Almost twice the required number of prime grade sensors
 - 40 sensors are required.
- Module assembly has started
 - Module assembly yield is ~100% so far
- Arrival of the assembled PXD at KEK: mid. of April, 2018

DEPFET sensor wafer produced at MPG-HLL (Munich)

16

Readout Integration

- Readout integration of installed sub-detectors and central DAQ is in progress.
- Global cosmic ray runs with B=1.5 Tesla in July and August, 2017.
 - Trigger rate at ~100Hz \rightarrow plan to do stress test up to 30kHz

Belle II control room

17

Belle II Computing

Distributed computing following the LHC model

- Manage the processing of massive data sets
- Production of large MC samples
- Many concurrent user analysis jobs

Generated on 2017-08-29 16:51:42 UTC

High speed networking data challenge in 2016:

 Belle II networking requirements are satisfied

Machine Preparation for Phase 2¹⁹

Phase 2 Commissioning

Super KEKB

Machine commissioning strategy

- I. Start with low beam current
- 2. Squeeze beams to achieve specific Luminosity $L_{sp} = L/(I_{+}I_{-}n_{b}) = 2 \times 10^{31}/cm^{2}/s/mA^{2}$ cf. $L_{sp} = 1.7 \times 10^{31}/cm^{2}/s/mA^{2}$ @KEKB
- 3. Increase number of bunches (n_b) from 394 to 1576, keeping bunch current constant:
 I₊ =0.64mA, I₋=0.51mA
- 4. Further squeeze beam to achieve $L_{sp} = 4 \times 10^{31}/$ cm²/s/mA², and even $8 \times 10^{31}/$ cm²/s/mA²

SuperKEKB can exceed the peak luminosity of KEKB when we achieve $\xi_y > 0.05$

	Phase 2	2.2 (8x8)	Phase 2	2.3 (4x8)	Phase 2	2.4 (4x4)	
	LER	HER	LER	HER	LER	HER	
$I_L \mathrel{\textbf{X}} I_H, n_b$	100	00 mA x 800	mA, 1576 b	unches (3-b	ucket spaci	ng)	
β_x^* [mm]	256	200	128	100	128	100	
β_{y}^{*} [mm]	2.16	2.40	2.16	2.40	1.08	1.20	
ε _y /ε _x [%]	5.	.0	1.	.4	0.7*		
يلين ا	0.0104	0.0041	0.0053	0.0021	0.0053	0.0021	
ξy	0.0257	0.0265	0.0484	0.0500	0.0496	0.0505	
I _{bunch} [mA]	0.64	0.51	0.64	0.51	0.64	0.51	
L [cm ⁻² s ⁻¹]	1 x (tentativ	10 ³⁴ e target)	2 x 10 ³⁴) ³⁴ 2 x 10 ³⁴ 4 x 10 ³		10 ³⁴
L _{sp} [em ⁻² s ⁻¹ /mA ²]	1.97	1.97 x 10 ³¹		3.94 x 10 ³¹		x 10 ³¹	
			* conse	rve β _v */ε _v			

20

Machine Parameters

Phase 2 Commissioning

Machine commissioning strategy

- I. Start with low beam current
- 2. Squeeze beams to achieve specific Luminosity $L_{sp} = L/(I_{+}I_{-}n_{b}) = 2 \times 10^{31}/cm^{2}/s/mA^{2}$ cf. $L_{sp} = 1.7 \times 10^{31}/cm^{2}/s/mA^{2}$ @KEKB
- 3. Increase number of bunches (n_b) from 394 to 1576, keeping bunch current constant:
 I₊ =0.64mA, I₋=0.51mA
- 4. Further squeeze beam to achieve $L_{sp} = 4 \times 10^{31}/$ cm²/s/mA², and even $8 \times 10^{31}/$ cm²/s/mA²

Beam background study

Study	Purpose
Beam-size scan	Measure Touschek BG component
Vacuum bump study	Measure Beam-gas BG component
Collimator study	Find optimal setting
Injection study	Measure injection BG time structure, improve injection efficiency
Luminosity scan	Measure lumi. BG component

Machine Parameters

SuperKEKB can exceed the peak luminosity of KEKB when we achieve $\xi_y > 0.05$

	Phase 2	2.2 (8x8)	Phase 2.3 (4x8)		Phase 2.4 (4x4)	
	LER	HER	LER	HER	LER	HER
$I_L \mathrel{\textbf{X}} I_H, n_b$	100	00 mA x 800	mA, 1576 b	unches (3-b	ucket spaci	ng)
β_x^* [mm]	256	200	128	100	128	100
β _y * [mm]	2.16	2.40	2.16	2.40	1.08	1.20
ε _y /ε _x [%]	5.	5.0		.4	0.7*	
يلين ا	0.0104	0.0041	0.0053	0.0021	0.0053	0.0021
Ęy	0.0257	0.0265	0.0484	0.0500	0.0496	0.0505
I _{bunch} [mA]	0.64	0.51	0.64	0.51	0.64	0.51
L [cm ⁻² s ⁻¹]	1 x (tentativ	10 ³⁴ e target)	2 x 10 ³⁴		4 x 10 ³⁴	
L _{sp} [em ⁻² s ⁻¹ /mA ²]	1.97 :	x 10 ³¹	3.94 x 10 ³¹		7.88 x 10 ³¹	

conserve βy*/εy

Phase 2 Commissioning

Machine commissioning strategy

- I. Start with low beam current
- 2. Squeeze beams to achieve specific Luminosity $L_{sp} = L/(I_{+}I_{-}n_{b}) = 2 \times 10^{31}/cm^{2}/s/mA^{2}$ cf. $L_{sp} = 1.7 \times 10^{31} / \text{cm}^2 / \text{s/m} A^2$ @KEKB
- 3. Increase number of bunches (n_b) from 394 to 1576, keeping bunch current constant: $I_{+} = 0.64 \text{mA}, I_{-} = 0.51 \text{mA}$
- 4. Further squeeze beam to achieve $L_{sp} = 4 \times 10^{31}$ / $cm^2/s/mA^2$, and even $8 \times 10^{31}/cm^2/s/mA^2$

Beam background study

Study	Purpose
Beam-size scan	Measure Touschek BG component
Vacuum bump study	Measure Beam-gas BG component
Collimator study	Find optimal setting
Injection study	Measure injection BG time structure, improve injection efficiency
Luminosity scan	Measure lumi. BG component

Machine Parameters

SuperKEKB can exceed the peak luminosity of KEKB when we achieve $\xi_y > 0.05$

	Phase 2	2.2 (8x8)	Phase 2.3 (4x8)		Phase 2	4 (4x4)
	LER	HER	LER	HER	LER	HER
$I_L \mathrel{\textbf{X}} I_H, n_b$	100	00 mA x 800	mA, 1576 b	unches (3-b	ucket spaci	ng)
β_x^* [mm]	256	200	128	100	128	100
β _y * [mm]	2.16	2.40	2.16	2.40	1.08	1.20
ε _y /ε _x [%]	5.	5.0		.4	0.7*	
ሄጦ	0.0104	0.0041	0.0053	0.0021	0.0053	0.0021
ξy	0.0257	0.0265	0.0484	0.0500	0.0496	0.0505
I _{bunch} [mA]	0.64	0.51	0.64	0.51	0.64	0.51
L [cm ⁻² s ⁻¹]	1 x (tentativ	10 ³⁴ e target)	2 x 10 ³⁴		4 x 10 ³⁴	
L _{sp} [em ⁻² s ⁻¹ /mA ²]	1.97	x 10 ³¹	3.94 x 10 ³¹		7.88 x 10 ³¹	

Phase 2 Physics

Plan for 4-5 months of machine studies \rightarrow 1-2 months may contain useful data, w/ L ~ 1×10^{34} cm⁻²s⁻¹ \rightarrow 20-40 fb⁻¹

• Runs on unique E_{CM} , e.g. $\Upsilon(6S)$

Experiment	Scans	$\Upsilon(6S)$	$\Upsilon(5$	(S)	$\Upsilon(4)$	(4S)	$\Upsilon(3$	BS)	$\Upsilon(2$	2S)	$\Upsilon(1$	S)
	Off. Res.	fb^{-1}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}	fb^{-1}	10^{6}
CLEO	17.1	-	0.1	0.4	16	17.1	1.2	5	1.2	10	1.2	21
BaBar	54	R	b_b scan		433	471	30	122	14	99	_	
Belle	100	~ 5.5	36	121	711	772	3	12	25	158	6	102

Bottomonium (-like) physics

Light DM search w/ 20fb⁻¹

dark photon: A' $\rightarrow \gamma$ + invisible

CKM

0.1

ρ

22

0.6

22

0.25

0.05

0.15

ρ

0.10

0.20

0.25

Summary

- Phase I commissioning in 2016 was successful.
- Phase 2 preparation in progress
 - All sub-detectors except for VXD have been installed.
 - Global cosmic ray runs with B field in Summer 2017.
 - Damping ring starts in Dec.2017, Main ring in Feb.2018.
 - Plan for background study and physics programs under discussion.
- Vertex detectors (SVD+PXD) construction in full swing. They will be installed after phase 2
- Phase 3 will start in late JFY2018.

Rich physics results will come soon !

Belle II Outreach

Today is #darkmatterday. Read more about dark matter research at #Belle2 at belle2.jp/discover facebook.com/belle2collab/p

● 英語から翻訳

Belle II Collaboration 作成者: Robert Seddon [?] · 6月14日 · 🚱

3,067人人にリーチしました

🖒 いいね! 💭 コメントする 🛱 シェアする

The big eye of the Aerogel Ring Imaging CHerenkov detector (ARICH), which will be located in the forward endcap of the Belle II detector, has been completed! All 420 of the novel pixelated photo-sensors known as HAPDs (Hybrid Avalanche Photo-Detectors) have been installed together with the corresponding read-out electronics. This is a major milestone for this innovative detector system. What remains to be done is the cabling of signal and supply lines on the rear side of the detector. Once this is accomplished, the cover lid will be placed over the aerogel layer and mounted on the #Belle2 structure. We are looking forward to seeing Cherenkov rings! 翻訳を見る

投稿を宣伝

Also public HP: <u>belle2.jp</u>

Belle II Outreach

Belle II Experiment @belle2collab · 10月31日 Today is #darkmatterday. Read more about dark matter research at #Belle2 at belle2.jp/discover

facebook.com/belle2collab/p ③ 英語から翻訳

Belle II Collaboration 作成者: Robert Seddon [?] · 6月14日 · @

3,067人人にリーチしました

🖒 いいね! 🗘 コメントする 🖒 シェアする

The big eye of the Aerogel Ring Imaging CHerenkov detector (ARICH), which will be located in the forward endcap of the Belle II detector, has been completed! All 420 of the novel pixelated photo-sensors known as HAPDs (Hybrid Avalanche Photo-Detectors) have been installed together with the corresponding read-out electronics. This is a major milestone for this innovative detector system. What remains to be done is the cabling of signal and supply lines on the rear side of the detector. Once this is accomplished, the cover lid will be placed over the aerogel layer and mounted on the #Belle2 structure. We are looking forward to seeing Cherenkov rings! 翻訳を見る

6 -

Follow Us <a>Omega @Belle2collab

Also public HP: <u>belle2.jp</u>

Thank you !

Backup Slides

Parameter

	KEKB LER /HER	Phase 1	Phase 2 4x8	Phase 3
β_x^* (mm)	1200 / 1200	/	128 / 100	32 / 25
β_y^* (mm)	5.9 / 5.9	/	2.16 / 2.4	0.27 / 0.30
ε _x (nm)	18 / 24	2.0/4.6	2.1/4.6	3.2 / 4.6
ε _y (pm) , coupling	1498 / 1598	~ 10 / -	29.4 / 64.4, 1.4% (105 / 230, 5.0%)	8.64 / 12.9 (0.27% / 0.28%)
ξγ	0.129 / 0.090	-	0.0484 / 0.0500 (0.0257 / 0.0265)	0.088/0.081
σ _γ * (μm)	0.94 / 0.94	-	0.25 / 0.39 (0.48 / 0.74)	0.048/0.062
I _{beam} (A)	1.64/1.19	1.01/0.87	1.0/0.8	3.6/2.6
N _{bunches}	1584	1576	1576	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2.1	-	2 (1)	80

Belle II Expected Performance

IP resolution

Tracking efficiency vs. p_t

Energy resolution Better w/ no background, worse w/ background