

Applications of Particle Accelerators

John Womersley Director-General, European Spallation Source

@johnwomersley

Outline

- The particle accelerator business
- What is the role of the laboratories represented in ICFA?
- Some personal observations and suggestions

Acknowledgments:

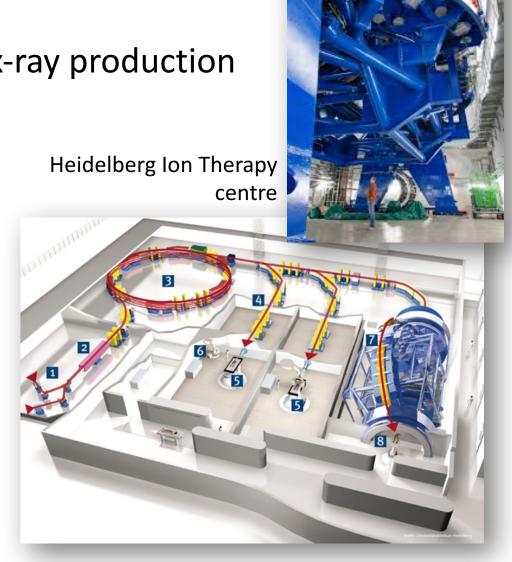
- EUCARD² report on Applications of Particle Accelerators in Europe
- R. Hamm and M. Hamm (eds.) "Industrial Accelerators and their applications"
- Presentations at IPAC 2017 by Robert Hamm, Robert Kephart, Angeles Faus-Golfe and Soren Pape Moller

Particle accelerators as a business

- Devices that can accelerate subatomic particles to relativistic velocities
- 30 40,000 in use worldwide, vast majority commercially manufactured
- Over 100 companies worldwide
- Over \$5B in sales annually
- Involved in the creation of over \$500B/year in products

Markets

- Major non-scientific markets
 - Cancer therapy \$2.6B
 - Ion implantation in semiconductors and materials \$1.6B
 - Electron beams for materials processing \$180M
 - Electron beams for irradiation \$160M
 - Non-destructive testing and inspection \$160M


Plus equipment for big science facilities

Medical applications

- Over 14,000 electron linacs (4-20MeV) for x-ray production
- 60-70 proton and ion therapy accelerators
- 1600 isotope production accelerators

Challenges

- Cancer rates increasing especially in LMICs
- Combined imaging and treatment
- Dosimetry
- Lower cost, more compact, higher throughput hadron therapy
- Reducing cost of radioisotope production
 - Yesterday's presentation by Paul Schaffer

Industrial applications

- Over 11,000 ion implantation machines (< 1 MeV)
- 7500 electron accelerators for materials processing and welding (< 10 MeV)
- 3000 electron accelerators for sterilisation (< 10 MeV)
 - All requiring high current (10-150 mA)

Challenges

- Lower costs, higher efficiency, simpler operation
- Miniaturisation
- Higher beam power (< MW)
- Regulatory barriers in EU to use of ionising radiation in food processing

Sterilisation

Security applications

 Maybe 100 electron accelerators for x-ray border screening of cargo

Challenges

- Low cost, simple to use, portable systems
- 3D imaging by CT
- Smarter (AI?) image processing
- Lower dose rates (to avoid hazard to any people being smuggled in cargo)
- High energy x-ray (or FEL) machines for nuclear weapons stewardship
 - imaging and hydrodynamics e.g. MARIE at Los Alamos

Dreams of new applications

- Radioactive waste transmutation
- Accelerator-driven systems (including thorium) for energy production
- Bio-fuel production
- Fusion and fusion materials
 - e.g. IFMIF

MYRRHA at SCK-CEN

Compact (university scale) neutron sources

... and mustn't forget accelerator technologies (like very high field magnets) with applications in other areas

Commercial accelerators need to be

- Cheap
- Reliable
- Proven

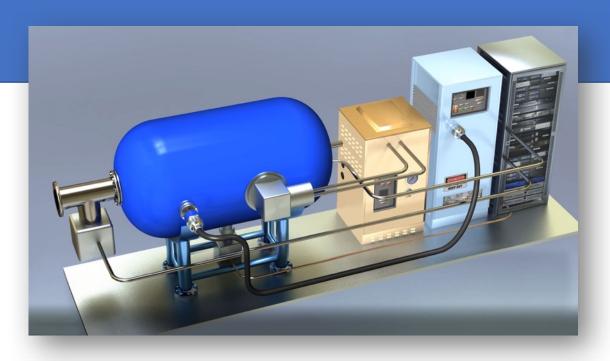
- New technology
 - only needed if
 - it reduces cost or increases reliability
 - if it can open new markets
 - will likely take many years to gain acceptance

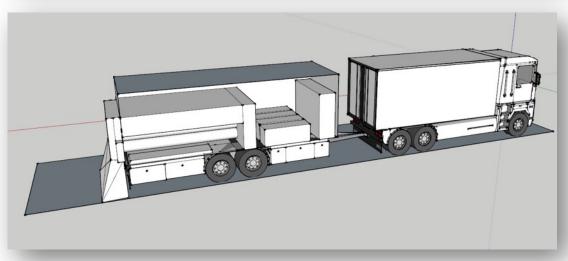
Where could recent R&D in our laboratories lead?

- Major R&D investment in superconducting RF acceleration over past decade
- Now many applications in big science facilities
 - LCLS II, European XFEL, ESS...

Where could this technology find a commercial market?

Potential applications of SC RF

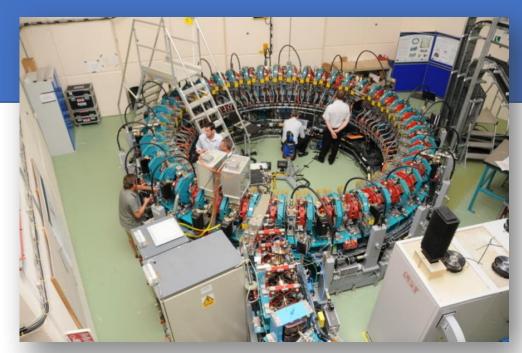

- Environmental remediation, wastewater and flue-gas treatment
- Electron-beam melting for additive manufacturing
- Replacement of ⁶⁰Co in sterilization of medical devices
- Chemical catalysis, polymerisation
- Security scanning



Prototype flue gas treatment in Poland

Concept for a high power (MW), MeV energy, cheap, compact, mobile electron accelerator based on superconducting RF

Fermilab with funding from US DOD

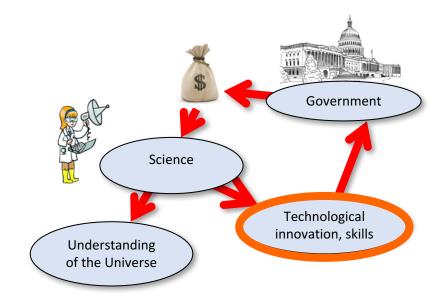


Other new technologies

- New accelerator configurations
 - FFAG rings
 - new electrostatic configurations

- Laser plasma acceleration
 - A better test bed than particle physics?
 - Plenty of applications need compactness without stringent beam quality

Accelerators for Big Science


 CERN (LHC) and Fermilab (neutrino programme) 	\$2B
Nuclear physics	\$4B
Synchrotron Light Sources	\$1-2B
- Many planned upgrades to low emittance MBA design	
X-ray Free electron lasers	\$1B
Neutron sources	\$2B
• IFMIF (?)	\$0.5B

Total roughly \$1B /year if spread over ten years

What is the role of the laboratories in ICFA?

- Depend upon particle accelerators to maintain cutting edge science capability
- Substantial investment in R&D necessary
- 'Stewardship' role (whether formalised or not)
 of high energy physics in developing accelerator
 technology capabilities

- Increasingly a requirement to explain how this investment contributes to broader societal and national goals
- And increasingly a requirement (whether formalised or not) to promote more such impact

STFC CERN Business Incubation Centre at Daresbury

- Offers tenant companies access to CERN IP, free access to STFC expertise, cash incentive, business and marketing support
 - 100% the right thing to do
 - 100% harder than we expected

 Needed to broaden scope from accelerators to include detectors, cryogenics, computing and other technology

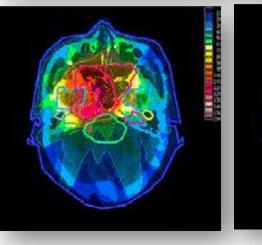
Analogy: ESA BIC is for applications of space not rockets...

Illinois Accelerator Research Center (IARC) at Fermilab

Again, it's been a long, slow journey

Observations - 1

- Accelerator technology transfer is hard!
 - Which doesn't mean it's the wrong thing to do
 - Industry has no duty to employ anything that we have developed
- Accelerators are a tough business
 - Capital and R&D intensive
 - Slow
 - May not be for startups or SME's
 - We've seen very big companies (Siemens) pull out


Observations - 2

Technology push plus physicist arrogance can lead to problems...

Just because we have a beautiful technical solution doesn't mean it solves a real world problem in a cost effective way

- often we seem to propose a Concorde when the application needs a 747
- e.g. ion therapy, radioactive waste transmutation, cargo scanning...

My advice to the accelerator laboratories in ICFA

- Every large accelerator laboratory should have a business/industry engagement programme
- One goal should be to facilitate the broader application of new technologies we have developed for our own needs
- Accelerator technology should be part of this programme
 - While acknowledging that it's a challenging technology that may not be suitable for all
 - Part of a package along with detectors, data handling, etc.
- Be realistic better to under-promise and over-deliver than the reverse...

Conclusions

- Particle accelerators are a significant business sector with applications from medicine to industry and several billion in annual sales, mostly based on mature technologies
- There is a wide range of new application areas
- There are new technologies ripe for application
- We should help
- But we mustn't underestimate the real-world challenges

