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Context: Ab Initio Nuclear Theory
Goal: solve the nuclear eigenvalue problem

H |Ψk〉 = Ek |Ψk〉 , where H =

A∑
i

Ti +
∑
i<j

Vij +
∑

i<j<f

Vijf + · · ·

with nucleons as the degrees of freedom

The No-core Shell Model

Expand in anti-symmetrized products of
harmonic oscillator single-particle states

|Ψk〉 =

Nmax∑
N=0

∑
j

ckNj |ΦNj〉

Calculations should converge to the exact value as Nmax →∞
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Motivation

I Computational complexity grows
exponentially with basis size parameter
Nmax

I The functional form of convergence
curve is not known

I Ad hoc extrapolation:

E = E∞ + α exp(−bNmax)

Goal: predict value at Nmax →∞ with a meaningful error bar
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Problem Statement
Given some data y = y(x), find the underlying function y(x), i.e. predict y∗ = y(x∗)
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y ∼ −E

x ∼ Nmax



Gaussian Processes
Key Assumption (Prior):
y and y∗ are drawn from a joint Gaussian distribution

p

([
y
y∗

])
= N

([
µ
µ∗

]
,

[
C C∗
CT
∗ C∗∗

])
Make predictions by conditioning on data:

p(y∗|y) = N (µ∗,Σ∗)

where

µ∗ = CT
∗ C
−1y

Σ∗ = C∗∗ − CT
∗ C
−1C∗
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C = C[y,y]

= r(x,x)

C∗ = C[y,y∗]

= r(x,x∗)

C∗∗ = r(x∗,x∗)



Gaussian Processes give a distribution of predictions (within error band)

Problem: Error bars blow up outside of data!

Idea: Use information about derivatives
6 / 19



Constraints on Derivatives

Weight probability of samples:

p(y∗|y) ∼ N (µ∗,Σ∗)×m(y′)× n(y′′)

based on criteria:

m(y′) =
∑
i

(
m(y′i) =

{
1 if y′i > 0

0 otherwise

)

n(y′′) =
∑
i

(
n(y′′i ) =

{
1 if y′′i < 0

0 otherwise

)
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Using Derivatives

I The derivative of a Gaussian process is a Gaussian process
I i.e. y′i ≡

dy
dx |x=x′

i
is also jointly Gaussian distributed (as is y′′)

p

y∗y′
y′′

 ∣∣∣∣y
 = N (ν,Σ)

(ν and Σ are more complicated (see Extra Slides))

We want the posterior distribution:

p

y∗y′
y′′

 ∣∣∣∣y
 = N (ν,Σ)×m(y′)× n(y′′)

Use SMC!
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Sequential Monte-Carlo / Particle Filter

Draw N samples (”particles”:

y∗y′
y′′

) from a GP

for τ1, τ2 from 0 to∞:

I for each particle:

I I propose new

y∗y′
y′′

 values ”nearby” old values

I accept or reject according to p

y∗y′
y′′

 ∣∣∣∣y, τ1, τ2
 = N (ν,Σ)× φ(τ1y

′)× φ(−τ2y′′)

I resample: throw away ”bad” particles and keep multiple copies of ”good” particles
(weighted by constraints)
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φ

y′



Results: He4
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τ = 0 τ = 0.08 τ = 0.3

τ = 2.3

τ = 55 τ = 3×106



Results: He4
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Results: He4
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Results: He4
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Results: He4
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Results: He4
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Summary

I Constrained Gaussian processes are not yet competitive with state-of-the-art
I Predictions far from data are difficult

Outlook
I Add y′ → 0 constraint at very large Nmax

I Try adaptive constraint schedules
I Try ”log kernels”
I Re-factored code to be shared
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Thank you
Merci



Extra: Gaussian Processes
Key Assumption (Prior):

y values are drawn from a multivariate Gaussian distribution

p

([
yi
yj

])
= N

([
µ[yi]
µ[yj ]

]
,

[
C[yi, yi] C[yi, yj ]
C[yj , yi] C[yj , yj ]

])
where C is the Covariance function defined by a kernel function e.g. Gaussian:

C[y1, y2] = r(x1, x2) = σ2 exp

(
−(x1 − x2)2

2`2

)
In other words:
Assumption on function space: nearby inputs have nearby outputs
(i.e. if |x1 − x2| ∼ ` then |y1 − y2| > σ is unlikely)
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Extra slide: Including Derivatives

p



y
y∗

y′

y′′


 = N



µ
µ∗
µ1
µ2

 ,

C C∗ C1 C2

CT
∗ C∗∗ C1∗ C2∗

CT
1 C∗1 C11 C12

CT
2 C∗2 C21 C22




then

p

y∗y′
y′′

 |y
 = N (ν,Σ)

where

ν = [C∗, C1, C2]C
−1y

Σ =

C∗∗ C1∗ C2∗
C∗1 C11 C12

C∗2 C21 C22

− [C∗, C1, C2]C
−1

C∗C1

C2



C∗1 = C[y∗,y′]

=
∂

∂xj
r(x∗,x′)

...
C22 = C[y′′,y′′]

=
∂2

∂x2i

∂2

∂x2j
r(x′′,x′′)
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