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Context: Ab Initio Nuclear Theory

Goal: solve the nuclear eigenvalue problem

H|U},) = E;, |¥;), where H = ZT+ZV;J+ Z Vijp+

i 1<j <j<f
with nucleons as the degrees of freedom
The No-core Shell Model

Expand in anti-symmetrized products of
harmonic oscillator single-particle states

Nmaz

|\Ilk Z ZCN]|(I)NJ

N=0 j

Calculations should converge to the exact value as Nyq, — 00
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Motivation

» Computational complexity grows St He :ggﬁﬁ.amp.
exponentially with basis size parameter -} —
Niaz = st N*LO (A = 500 MeV)
» The functional form of convergence 2 | Aggg = 24 fn”
curve is not known hQ =20 MeV
» Ad hoc extrapolation: B S
B 1
E = Eo + aexp(—=bNpaz) (R R N

Goal: predict value at N,,,. — oo with a meaningful error bar



Problem Statement

Given some data y = y(x), find the underlying function y(z), i.e. predict y* = y(x*)
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Gaussian Processes
Key Assumption (Prior):
y and y* are drawn from a joint Gaussian distribution

dCEARERN)

Make predictions by conditioning on data:

p(Yly) =N (s, Bi)
where

Mo = C:{C_ly

¥, =C.—Clc e,

C=Cly,y]
=r(x,x)

Ci =Cly,y"]
=r(x,x")

Ci = r(x*,x¥)
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Gaussian Processes give a distribution of predictions (within error band)
Problem: Error bars blow up outside of data!

W/

|dea: Use information about derivatives
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Constraints on Derivatives

Weight probability of samples:

(YY) ~ N (e, X)) x m(y’) x n(y”)

based on criteria:

o n )1 ifyi>0
m(y') = Z (m(yi) N {0 otherwise>

oo o)1 ifyl <0
) =2 (n(%) B {O otherwise
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Using Derivatives

» The derivative of a Gaussian process is a Gaussian process

» ey, = j—g +=2/ 1S @ls0 jointly Gaussian distributed (as is y”)

y*
p ([y’] y) =N{,x%)
y//

(v and X are more complicated (see Extra Slides))
We want the posterior distribution:

y*
p (M 'y) = N(,5) x m(y’) x n(y")
y

Use SMC!



Sequential Monte-Carlo / Particle Filter

N 101 — 1=00
y o 00=T1T=w
Draw N samples ("particles”: |y’ |) from a GP | i
" 0.6
y
for 71, 7 from 0 to oo: b o4
» for each particle: 0.2
y* 0.0
» » propose new |y’ | values "nearby” old values . 0 2
11 /

y*
» accept or reject according to p ([y'] y7T1,7'2) =N, X) X ¢p(n1y’) X ¢p(—m2y”)
y//

» resample: throw away "bad” particles and keep multiple copies of "good” particles
(weighted by constraints)



Results: He

-2

GP convexity constraints on binding energy, t=0
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GP convexity constraints on binding energy, t=30
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GP convexity constraints on binding energy, t=40
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GP convexity constraints on binding energy, t=50
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Results: He*

GP convexity constraints on binding energy
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Distribution of y * at extrapolation point
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Results: He*

% GP convexity constraints on binding energy Distribution of y * at extrapolation point
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Results: He*
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Results: He*
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Results: He*
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Summary

» Constrained Gaussian processes are not yet competitive with state-of-the-art
» Predictions far from data are difficult

Outlook

» Add ¢y’ — 0 constraint at very large N,,qx
» Try adaptive constraint schedules

» Try "log kernels”

» Re-factored code to be shared
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Extra: Gaussian Processes
Key Assumption (Prior):

y values are drawn from a multivariate Gaussian distribution

) ([%D :N<[N[yiq [C[yi,yi] C[?/iale]])
Yj ulyil] 7 [Clyj vl Clys ]
where C' is the Covariance function defined by a kernel function e.g. Gaussian:
. 2
Clyr, yo] = r(w1,29) = 0 eXp<—(5612£2$2)>

In other words:

Assumption on function space: nearby inputs have nearby outputs
(i.e. if |z1 — xo| ~ £ then |y1 — yo| > o is unlikely)
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Extra slide: Including Derivatives

y
y* — Mo CI C** Cl* C2*
P y' =N pi|’ 01; Ca Cn Cr2
3" T C., Cy C )
M2 2 2 21 22 Cuy = C[y ,y’]
then i
y* = —r(x*,x')
p( y’] Y) =N({,x) Oz,
y//
where Cy = Cly",y"]
=1C..C.C Cfl 82 82 "on
V_[ EX) 1, 2] y = a—ﬁ@r(x 7X )
C** Cl* 02* C* J
Y= [Cy Ci1 Ci| —[CiC,Co)C7 |y
Cia Co1 Oy Co
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