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3 ion-trapping flavors are found at TRIUMF.
Multi-reflection / 

electrostatic Penning traps Paul traps

pair of electrostatic mirrors magnet + electrostatic field oscillating (RF) electric field 



Differences between atomic origins and 

adaptation for radioactive ion beams (RIB).
AMO Nuclear

Precision  𝛿𝑚
𝑚 is <10-12 10-6-10-9

Ions are stable T½ ≥ few ms

Ion produced by surface ion accelerator facility

laser reactor facility

fission source

Beam energy < 5 keV > 20 keV

Cold < K ~ eV



Ion traps prepare & measure RIB.
Multi-reflection / 

electrostatic Penning traps Paul traps

pair of electrostatic mirrors

 mass measurements

 beam purification

 decay spectroscopy

magnet + electrostatic field

 mass measurements 

 decay spectroscopy

 beam purification

 charge breeding

oscillating (RF) electric field 

 beam preparation

 beam purification

 decay spectroscopy
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At TRIUMF, three groups use ion traps.

ALPHA: cerncourier.com/a/keeping-antihydrogen-the-alpha-trap; 
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TITAN is TRIUMF’s Ion Trap for 

Atomic and Nuclear science.



TRIUMF’s Ion Trap for Atomic and Nuclear science, 

uses 5 ion trap to prepare & measure RIB.

J. Dilling et al., NIMB 204 (2003) 492
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TITAN prepares the beam in the RFQ.

RFQ

continuous 

ISAC beam

J. Dilling et al., NIMB 204 (2003) 492



He buffer gas

The buffer-gas-filled linear Paul trap 

accumulates, cools, & bunches the RIB.
• RadioFrequency Quadrupole 

transverse confinement

• Segmentation  axial trapping

• Buffer gas  cooling

+𝑉𝑅𝐹cos(𝜔𝑅𝐹𝑡)

−𝑉𝑅𝐹cos(𝜔𝑅𝐹𝑡)

T. Brunner et al., NIMA 676 (2012) 32



He buffer gas

The buffer-gas-filled linear Paul trap 

accumulates, cools, & bunches the RIB.
• Space-charge limit of ~105 𝑒 with 

good emittance

• Longitudinal emittance of a few eV 

μs depending on extraction slope

• Shortest duty cycle demonstrated 

5 ms

+𝑉𝑅𝐹cos(𝜔𝑅𝐹𝑡)

−𝑉𝑅𝐹cos(𝜔𝑅𝐹𝑡)

T. Brunner et al., NIMA 676 (2012) 32



Broadband, fast mass measurements 

are performed in the MR-TOF-MS.

RFQ

MR-TOF MS

J. Dilling et al., NIMB 204 (2003) 492



Multi-Reflection Time-Of-Flight Mass Spectrometers 

are based on simple kinematics.
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𝑑𝑧
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Ion source Detector

Separation increases with flight path  longer path length 

OR multiple passes on same path

Precisions up to ~10-7

and for half-lives as low as 2 ms (215Po @Giessen-GSI)

Electrostatic

mirror

Electrostatic
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TITAN MR-TOF-MS capabilities:

• Space charge: ≤106 pps

• Sensitivity: <0.1 pps

• Shortest 𝑇1/2: 5 ms

• 𝛿𝑚/𝑚: > 5×10-8

• Trap lifetime: 100s ms (singly 

charged)

RFQ

MPET/

EBIT



MR-TOF was used to measure masses of

astrophysically important, n-rich 125-134In.
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C. Izzo et al., in preparation
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“Re-trapping” technique makes 

MR-TOF-MS its own purifier.
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The highest precision & accuracy are achieved with 

Penning trap mass spectrometry.



The Measurement Penning Trap can 

achieve precisions of 𝛿𝑚/𝑚 ~10-9.

J. Dilling et al., NIMB 204 (2003) 492

RFQ

MPET 

mass measurement

via 2p nc = q/m ∙ B
MR-TOF MS



A Penning trap accesses the cyclotron 

frequency & therefore the ion’s mass.
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RIB mass measurements with precisions up to ~10-9

and for half-lives as low as 9 ms (11Li+ @ TITAN-TRIUMF)

𝐁

L.S. Brown & G. Gabrielse, Rev. Mod. Phys., 58 (1986) 233



Cyclotron frequency can 

be determined via

Time-of-Flight 

Ion Cyclotron 

Resonance
21Mg+

122 ms

Phase-Imaging 

Ion Cyclotron 

Resonance

Fourier-Transform 

Ion Cyclotron 

Resonance

M. König, et al., Int. J. Mass Spec. 142 (1995) 93; S. Eliseev, et al., PRL 110 (2013) 082501; A.G. Marshall, et al., Int. J. Mass Spec. 215 (2002) 59

all RIB PTMS

SHIPTRAP, CPT, 

JYFLTRAP, …

stable beam PTMS, 

(SHIPTRAP, LEBIT)
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Accuracy is understood in theory & practice.

Exact theoretical description
• Brown & Gabrielse, Rev. Mod. Phys. 58 (1986) 233

• G. Bollen, et al., J. Appl. Phys 88 (1990) 4355

• M. Konig, et al. Int. J. Mass Spec. 142 (1995) 95

• M. Kretzschmarr, Int. J. Mass Spec. 246 (2007) 122

Accuracy & precision for non-ideal traps
• G. Bollen, et al., J. Appl. Phys 88 (1990) 4355

• G. Gabrielse, Int. J. Mass. Spec. 279 (2009) 107

Corrections & stabilizations
• K. Blaum et al., EPJ A 15 (2002) 245

• M. Brodeur et al., IJMS 310 (2010) 20

• C. Droese et al., NiMA 632 (2011) 15

 Verified via tests of stable nuclides



TITAN MPET capabilities:

• Space charge: ≤103 𝑒

• Sensitivity: 100 pps

• Shortest 𝑇1/2: 8 ms

• 𝛿𝑚/𝑚: ≥ 10-9

• Trap lifetime: >2 s (singly charged)



The Cabibbo-Kobayashi-Maskawa matrix 

describes quark-mixing interactions.

In the Standard Model, the CKM matrix 

describes a unitary transformation.

𝑉𝑢𝑑
2 + 𝑉𝑢𝑠

2 + 𝑉𝑢𝑏
2 = 1

Top row is the most stringent test.

𝑉𝑢𝑑 dominates the top row.

It is measured through the mass difference 

of superallowed β emitters and their 

daughters.
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Figure: commons.wikimedia.org



The Q-value of 22Mg, a superallowed b emitter, 

supports quark-mixing matrix’s unitarity.
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M.P. Reiter, et al, PRC 96 (2017) 052501

TITAN Q-value measured through TOF-ICR to 220 eV & agrees with literature .

Weighted average dQ = 160 eV, 30% more precise
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How can higher performance be achieved?
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Higher charge states increases precision, reduces 

exp. requirements, or boosts resolving power.

𝛿𝑚

𝑚
∝

𝑚

𝑞𝑒 𝐵 𝑇𝑅𝐹 𝑁

𝑁 = statistics  limited by production

𝑇𝑅𝐹 = measurement time  limited by 𝑇1/2

𝐵 = magnetic field  limited by technology

𝑞 = charge state  limited by 𝑍

M.C. Simon, et al, RSI 83 (2012) 02A912



The Electron Beam Ion Trap 

performs fast charge breeding.

J. Dilling et al., NIMB 204 (2003) 492
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magnetic 

field
trap electron 

beam

cathodeelectron 

collector

BNG off

BNG on

The EBIT charge breeds through 

successive electron impact.

EBIT = Penning trap + electron beam

Charge-state distribution depends on Z, electron beam energy, electron current 

density, & charge breeding time.

EBIT also used for beam purification and storage during decay & recapture.

A. Lapierre, et al., NIMA 624 (2010) 54



TITAN EBIT capabilities:

• Space charge: ≤109 𝑒

• Sensitivity: 1000 pps

• Shortest 𝑇1/2: 65 ms

• Max 𝐸𝑒 𝑏𝑒𝑎𝑚: 65 keV

• Max current: 5 A

• Highest charge state: 55𝐶𝑠33+ at 
5 keV

• Trap lifetime: > few min



High charge states resolve isomers &

reveals details of nuclear structure.

D. Lascar, et al., PRC, 96 (2017) 044323; C. Babcock, et al. PRC 97 (2018) 024312

isomer   ground state

Excited state structure revealed in 

indium and odd-𝐴 cadmium isotopes 

approaching the closed shell 𝑁 = 82.



The EBIT also boast 7 radial ports,

optically accessing trapped ions.



The EBIT’s optical access allows

nuclear decay spectroscopy.
Magnetic field redirects b particles 

no positron-annihilation radiation.

Electron beam deepens confinement 

extends trap lifetime.

Science program:

• originally benchmarking 0n2EC 

nuclear matrix elements

• changes in nuclear properties as 

function of charge state for astro

• nuclear excitation by electron capture

A. Lennarz, et al, Phys. Rev. Lett. 113 (2014) 082502;  K.G. Leach et al., NIMA, 780 (2015) 91



EBIT’s backing-free environment and reduced β

background enhance certain measurements.
124Sn
124Xe
124Cs

A. Lennarz, et al, Phys. Rev. Lett. 113 (2014) 082502;  K.G. Leach et al., NIMA, 780 (2015) 91



TRIUMF builds & develops ion traps for short-lived species.
• radioactive ion beams (TITAN, CANREB)

• anti-hydrogen (ALPHA)

• with strong “other” technical support (detectors, controls, DAQ, cryo, HV, …)

TITAN focuses on nuclear-physics studies.
• mass measurements (Penning trap, MR-TOF)

• in-trap decay spectroscopy (in EBIT or trap assisted)

• beam purification & preparation (MR-TOF, EBIT, Penning trap)

Subatomic-physics vs. quantum computing
• substantial differences (species of interest, energy regime, detection technique, 

physical dimensions, …)

• substantial overlap (single-ion sensitivity, ion manipulation, optical access, …)




