Speaker
Dr
Karin Gilje
(University of Alberta)
Description
The spectrum of solar neutrinos from the $pp$ chain has been studied in depth by a variety of underground detectors. However, neutrinos from the $hep$ reaction (${}^3$He $+$ $p^+$ $\rightarrow$ ${}^4$He $+$ $e^+$ + $\nu_e$) remain unobserved due to the small theoretical branching ratio ($2\times10^{−7}$ per $pp$ termination). The SNO detector has a unique sensitivity to neutrino energies above the ${}^8$B spectrum endpoint (~15 MeV) through the $hep$ spectrum endpoint (~18.8 MeV) due to the charged current interaction on deuterium, which allows a more precise extraction of the underlying neutrino energy spectrum. The SNO collaboration previously published a world-leading limit in 2006 only using the first heavy water phase with 306.4 days of data. An updated status report on the analysis of the $hep$ neutrino spectrum from all three phases of SNO (1170.2 days) will be presented in this poster.
Primary author
Dr
Karin Gilje
(University of Alberta)
Co-author
Dr
Andy Mastbaum
(University of Chicago)