Dr
Geoffrey Fathom Grinyer
(University of Regina)
15/02/2018, 19:15
The Active Target and Time Projection Chamber (ACTAR TPC) is an ambitious European project whose goal is to design and construct a high-luminosity gas-filled detector to study reactions and decays of rare isotopes. The core detection system consists of a micro-pattern gaseous detector coupled to a highly pixelated pad plane with a pitch of only 2x2 mm2. Both the channel density (25...
Mr
Edward Thoeng
(TRIUMF)
15/02/2018, 19:45
CW high-power LINACs require SRF cavities operating at the frontier of high accelerating gradient and low RF power dissipation, i.e. high quality factor (Q0). This requirement poses a challenge for standard surface treatment recipes of SRF cavities and new treatments including doping and layered structures are being developed and proposed. Understanding the fundamental mechanisms behind the...
Mr
Benjamin Tam
(Queen's University)
15/02/2018, 20:00
The SNO+ experiment is a versatile multipurpose neutrino detector situated at SNOLAB. Though concentrated on the search for neutrinoless double beta decay in $^{130}$Te, SNO+ is also capable of a vast array of physics goals including the observation of geoneutrinos, reactor antineutrinos, supernova neutrinos, and other exotic physics such as axion-like particles and invisible nucleon decay....
Mr
Yan Liu
(Queen's University)
15/02/2018, 20:15
SNO+ is a kilo-tonne scale liquid scintillator experiment in search for neutrinoless double beta decay. SNO+ reuses the old SNO detector, which is currently filled with water. Physics topics including nucleon decay and antineutrino detection are explored during this water phase. In this talk I will discuss the importance of AmBe source calibration on both physics topics along with an overview...
Mr
Richard Germond
(Queens University)
15/02/2018, 20:45
Many astronomical and cosmological observations have led to the conclusion that approximately 85% of the mass content of the universe is composed of non-baryonic dark matter that interacts weakly with ordinary matter. The Super Cryogenic Dark Matter Search (SuperCDMS) experiment operates cryogenic semiconductor detectors to observe rare signals produced by dark matter particles colliding in...
Mr
Alexandre Laurier
(Carleton University)
15/02/2018, 21:15
The ATLAS experiment is being improved in order to benefit from the increased performance provided by the next phase of CERN’s large hadron collider upgrade plan. The Small Wheel will be replaced by the New Small Wheel, constructed from Micromega detectors and Small-strip Thin Gap Chambers (sTGC). The current state of the sTGC simulation software responsible for replicating hardware response...
Mr
Alessandro Ambler
(McGill)
15/02/2018, 21:30
Multiple analog and digital signal processing techniques are simulated to optimize the energy reconstruction performance of the upgraded readout electronics of the liquid argon hadronic endcap calorimeter in the ATLAS detector. The ATLAS detector is designed to record proton-proton collisions at the Large Hadron Collider (LHC). The detector will be upgraded in 2024-25 alongside the LHC's...
Mr
Konstantin Lehmann
(Simon Fraser Universtiy)
15/02/2018, 21:45
Recording proton-proton collisions at the LHC requires cutting-edge detectors, custom- made for high energy physics applications. A new Inner Tracker (ITk) will be built for the ATLAS experiment to be able to resolve approximately 200 proton collisions simultaneously during the high-luminosity LHC phase. In order to minimize dead detector area, individual sensors need to be placed as close as...