Aaron Vincent
(Queen's University)
2/17/18, 7:00 PM
IceCube’s observation of high-energy extra extraterrestrial neutrinos has signalled the dawn of neutrino astronomy. These events carry energies upward of a PeV and are isotropically distributed in the sky, and thus far their origin remains unknown. However, these data contain valuable information in their energy, flavour composition and arrival directions. I will demonstrate how these...
Dr
Carla Francisco
(Laval University)
2/17/18, 7:30 PM
The Standard Model, was formulated in the beginning of the '70s but only became empirically establish in the '80s, although it has not been able to describe the gravitational interaction yet, it succeeded in describing the electromagnetic interaction, the weak interaction and strong interaction. The three different types of neutrinos that exist in the Universe are in the exact number...
Mr
Ryan Plestid
(McMaster University and Perimeter Institute)
2/17/18, 8:00 PM
Upcoming and ongoing neutrino experiments at the intensity frontier offer an unprecedented combination of high luminosity neutrino beams and state of the art detector technology. These include Fermilab's Short Baseline Neutrino Program (SBN) and Deep Underground Neutrino Experiment (DUNE), and CERN's Search for Hidden Particles (SHiP). The powerful combination of large signals and high quality...
Dr
Mohammad Hedayatipour
(University of Alberta)
2/17/18, 8:15 PM
We examine neutral-current quasi-elastic neutrino-nucleus reactions on $^{12}$C and $^{208}$Pb targets. We use the relativistic mean field theory approach to describe the nuclear dynamics. We compute the cross sections for the scattering of 150-MeV, 500-MeV and 1000-MeV neutrinos on a $^{12}$C target and study the effect of the strange-quark content of the nucleon which appears in these...
Mr
Özer Özdal
(Concordia University)
2/17/18, 8:30 PM
We study the low scale predictions of supersymmetric standard model extended by $U(1)_{B-L}\times U(1)_{R}$ symmetry, obtained from $SO(10)$ breaking via a left-right supersymmetric model, imposing universal boundary conditions. Two singlet Higgs fields are responsible for the radiative $U(1)_{B-L}\times U(1)_{R}$ symmetry breaking, and a singlet fermion $S$ is introduced to generate neutrino...
Mr
Tyrell Edward Umbach
(Concordia University)
2/17/18, 8:45 PM
Adinkras are powerful and concise tools for the representation of complex supersymmetrical algebras as graphical objects. As these graphs can be seen as topologically equivalent to hypercubes of varying dimensions then these objects can be studied in terms of their underlying matrix structure. We have discovered a means of classifying all 4D Adinkra graphs in terms of attributes of their...