Dr
Tamara Vazquez Schroeder
(McGill University)
17/02/2018, 09:00
This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.
Mr
Tae Hyoun Park
(Carleton University)
17/02/2018, 09:30
The ATLAS detector at the Large Hadron Collider records high energy proton-proton collisions. These collisions can be used to test the Standard Model of particle physics that explain fundamental interactions of the universe. In these collisions, collimated sprays of hadronic particles, known as **jets**, are dominant final state object produced. They are key ingredients for most physics...
Mr
Stephen Weber
(Carleton University)
17/02/2018, 09:45
At the large hadron collider, most Z bosons are produced in a qqZ vertex, sometimes in association with jets produced via the strong interaction. A more rare production mode for Z bosons is through a triple gauge coupling via a process called vector boson fusion (VBF). This VBF Z process is similar in nature to VBF Higgs production, which is of great interest and is being studied by large...
Mr
Benjamin Freund
(Université de Montreal)
17/02/2018, 10:00
After the discovery of the Higgs boson at the LHC, it is important to test whether the Standard Model could be only an effective theory, and whether the Higgs sector could be extended to include theories with higher isospin multiplicity. This talk reports on a search for charged resonances produced by vector boson fusion and decaying via WZ$\rightarrow$lvl'l', based on proton-proton collision...
Mr
Sebastien Prince
(McGill University)
17/02/2018, 10:15
The production of a photon in association with a bottom quark in proton collisions is sensitive to the bottom quark content of the proton and to the modelling of b quarks in perturbative QCD calculations. A firm understanding of these aspects is required to properly describe background contributions to new physics interactions at high energies involving b quarks. Differential cross sections of...
Louis-Guillaume Gagnon
(Université de Montréal)
17/02/2018, 11:00
Supersymmetry (SUSY), an hypothetical theory which associate new fundamental particles to each Standard Model (SM) particle, is one of the most well-motivated SM extensions and could solve some of its biggest outstanding problems. For example, if the lepton and baryon numbers are conserved, the lightest supersymmetric particle is stable and interacts only weakly providing a viable dark matter...
Otilia DUCU
(University of Montreal)
17/02/2018, 11:15
A search for strongly produced supersymmetric particles using signatures involving multiple energetic jets and either two isolated same-sign leptons (e or µ), or at least three isolated leptons, is presented. The analysis relies on the identification of b-jets and high missing transverse momentum to achieve good sensitivity. A data sample of proton–proton collisions at sqrt s = 13 TeV recorded...
Mr
Kays Haddad
(McGill University)
17/02/2018, 11:30
Many models that extend the Standard Model Higgs sector predict the existence of at least one charged Higgs boson, in addition to the neutral Higgs boson expected from the Standard Model. While searches have been performed, a charged Higgs boson has not yet been observed. Using physics and detector simulations, the sensitivity of a search for a charged Higgs boson at the forthcoming High...
Ms
Shreya Saha
(McGill University)
17/02/2018, 11:45
A novel B-Physics trigger for the ATLAS detector is being developed to enable lepton universality studies by selecting $B^0\rightarrow K^{*}e^+e^-$ events and complementing the existing $B^0\rightarrow K^{*}\mu^+\mu^-$ trigger. In the Standard Model, lepton universality refers to the fact that the electroweak couplings of the leptons to the gauge bosons is independent of the lepton flavour. A...