Conveners
Morning 6 - QCD and Hadrons
- Timothy Friesen (University of Calgary)
Presentation materials
Heavy-ion collisions have reached energies high enough to melt the nucleus into its fundamental constituents, the quarks and gluons, making a Quark Gluon Plasma (QGP). In addition to creating the QGP, these collisions can transfer large momenta to a small subset of quarks and gluons (also known as partons), thus promoting these partons to a highly excited state, which will subsequently radiate...
Ultra-relativistic heavy-ions collisions performed at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) produce a de-confined state of quarks and gluons, called quark-gluon plasma (QGP). One of the primary goals of these collisions is to learn the properties of QGP, through the modifications it imparts on jets and photons. Jets are a collimated spray of particles...
The Jefferson Lab
Unveiling Hadronic Mass Generation Through Light Meson Structure with ePIC
Love Preet
The Electron-Ion Collider (EIC) will be the world’s first polarized collider facility that is planned to be...
Fermilab's 2023 measurement of the muon's anomalous magnetic moment (
The KaonLT/PionLT Collaboration probes hadron structure by measuring deep exclusive meson production reactions at Jefferson Lab. A set of high momentum, high resolution spectrometers in Hall C allow for precision measurements from which form factors and other observables can be extracted. One possible measurement is the beam spin asymmetry, which allows for the extraction of a polarized...
Generalized Parton Distributions (GPDs) are a huge advancement in our understanding of hadronic structure and non-perturbative QCD. To study GPDs, one may use the Deep Exclusive Meson Production (DEMP) reaction, but first one must find the Q^2 regime where DEMP is factorizable. The factorization regime is where the cross-section can be divided into two parts, a hard part calculated with pQCD,...