Events in our system are self-managed.  Group and event managers are encouraged to review privacy and security settings, and adjust them if needed.  If you need assistance please contact Indico Support - contact Help at bottom of page.

Feb 15 – 18, 2022
America/Vancouver timezone
WNPPC2022 Booklet has been added. See also information about today's special guest: Dr. Eden Hennessey

Discovering Composite Dark Matter with the Migdal Effect

Feb 16, 2022, 10:36 AM


Dark Matter Searches Dark Matter Searches


Javier Acevedo (Queen's University)


An intriguing possibility for dark matter is that it formed bound states in the early Universe, in a scenario called “composite” dark matter, much like the Standard Model fundamental particles formed nucleons, nuclei and atoms. One of the simplest composite dark matter models consists of dark matter fermions bound together by a real scalar field. Composite states that are massive enough source scalar fields so intense that nuclei, when coupled to this force, can recoil upon contact to energies capable of ionization through the Migdal effect. Combined with the large sizes of these composites, the ionization signal produced by their transit at dark matter experiments is detectable even for minuscule couplings between nuclei and the dark matter. In this talk, I will discuss the discovery prospects of composite states at noble element detectors like Xenon-1T and other underground experiments by considering the Migdal effect.

email address
Please select: Experiment or Theory Theory

Primary author

Javier Acevedo (Queen's University)

Presentation materials