Events in our system are self-managed.  Group and event managers are encouraged to review privacy and security settings, and adjust them if needed.  If you need assistance please contact Indico Support - contact Help at bottom of page. https://learn.getindico.io/categories/managing/

15–18 Feb 2022
virtual
America/Vancouver timezone
WNPPC2022 Booklet has been added. See also information about today's special guest: Dr. Eden Hennessey

Quark and Gluon Jet Response from Dijet and Z/Gamma + Jet Events at ATLAS.

18 Feb 2022, 14:00
12m
virtual

virtual

Speaker

Alex Bunka (Simon Fraser University)

Description

The most commonly produced objects in the ATLAS detector are jets, streams of particles spreading out from the proton-proton collision point. Jets develop from the constituent quarks and gluons of the protons. These particles carry color charge, and as such cannot exist freely under QCD confinement, and a chain reaction of quark/gluon production begins. Eventually, the quarks and gluons combine, forming hadrons. The ATLAS calorimeters measure much, but not all, of the energy of these jets. The measured fraction is known as the jet response, and jets initiated by quarks have a different response than those initiated by gluons. Here we seek to study the different responses by analyzing dijet, Z+jet and photon+jet events. While the photon and Z boson events can already be well analyzed by the missing energy projection fraction (MPF) calibration technique thanks to the well-defined reference objects (a single Z or photon), the dijet events must be handled differently. A study of jet characteristics allows the energy of one jet in certain dijet events to be corrected, and it may then be used as a reference for the other in MPF. Finally, quark and gluon jet responses can be extracted using the particle fractions in the three event types.

email address atb3@sfu.ca
Please select: Experiment or Theory Experiment

Primary author

Alex Bunka (Simon Fraser University)

Presentation materials