Events in our system are self-managed.  Group and event managers are encouraged to review privacy and security settings, and adjust them if needed.  If you need assistance please contact Indico Support - contact Help at bottom of page.

Feb 15 – 18, 2022
America/Vancouver timezone
WNPPC2022 Booklet has been added. See also information about today's special guest: Dr. Eden Hennessey

Electromagnetic Transition Rate Studies in 28Mg

Feb 15, 2022, 8:24 AM


Nuclear Structure Nuclear Physics


Matthew Martin (Simon Fraser University)


Neutron rich Mg isotopes far from stability belong to the island of inversion, a region where the single particle energy state description of the shell model breaks down and the predicted configuration of the nuclear states becomes inverted. Nuclei in this region also exhibit collective behaviour in which multiple particle interactions play a significant role in nuclear wavefunctions and transitions. This can be observed through electromagnetic transition strength measurements.

In-beam reaction experiments performed at TRIUMF, Canada's particle accelerator centre, allow for precision measurements of nuclei far from stability. Using TIGRESS in conjunction with the TIGRESS Integrated Plunger for charged particle detection, electromagnetic transition rates can be measured to probe nuclear wavefunctions and perform tests of theoretical models using the well-understood electromagnetic interactions.

In this talk, I will discuss an experiment performed using TIGRESS and the TIGRESS Integrated Plunger to measure the lifetime of the first excited state in $^{28}$Mg. This experiment utilized both the Doppler Shift Attenuation Method and the Recoil Distance Method, which exploit the Doppler shift of gamma rays emitted in flight, in order to be sensitive to both short- and long-lived states in the nucleus. The current state of data analysis and the impacts on nuclear physics will be discussed.

email address
Please select: Experiment or Theory Experiment

Primary author

Matthew Martin (Simon Fraser University)

Presentation materials